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Exhaustive Exploitation of Nature-Inspired
Computation for Cancer Screening in

an Ensemble Manner
Xubin Wang , Yunhe Wang , Zhiqiang Ma, Ka-Chun Wong , and Xiangtao Li

Abstract—Accurate screening of cancer types is crucial for ef-
fective cancer detection and precise treatment selection. However,
the association between gene expression profiles and tumors is
often limited to a small number of biomarker genes. While com-
putational methods using nature-inspired algorithms have shown
promise in selecting predictive genes, existing techniques are lim-
ited by inefficient search and poor generalization across diverse
datasets. This study presents a framework termed Evolutionary
Optimized Diverse Ensemble Learning (EODE) to improve ensem-
ble learning for cancer classification from gene expression data.
The EODE methodology combines an intelligent grey wolf opti-
mization algorithm for selective feature space reduction, guided
random injection modeling for ensemble diversity enhancement,
and subset model optimization for synergistic classifier combi-
nations. Extensive experiments were conducted across 35 gene
expression benchmark datasets encompassing varied cancer types.
Results demonstrated that EODE obtained significantly improved
screening accuracy over individual and conventionally aggregated
models. The integrated optimization of advanced feature selection,
directed specialized modeling, and cooperative classifier ensem-
bles helps address key challenges in current nature-inspired ap-
proaches. This provides an effective framework for robust and
generalized ensemble learning with gene expression biomarkers.

Index Terms—Feature selection, clustering, ensemble learning,
grey wolf optimizer, classification.
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I. INTRODUCTION

CANCER has become one of the leading causes of mortality
worldwide, resulting in over 10 million deaths in 2020

alone [1]. The heterogeneity and complexity of various cancer
types poses significant challenges for timely and accurate di-
agnosis, prognosis, and treatment planning [2], [3]. Precision
oncology aims to overcome these difficulties by leveraging
molecular biomarkers and omics data to guide personalized
therapeutic decisions [4]. In particular, analysis of cancer gene
expression data enables identification of discriminative genes
and pathways involved in pathogenesis, which can inform diag-
nostic tests, prognostic indicators, and drug targets [5], [6].

However, several analytical difficulties impose barriers to
identifying robust molecular biomarkers from gene expression
data. Small sample sizes coupled with extremely high dimen-
sionality and sparsity of the data make computational analysis
statistically underpowered [7]. Technical noise, batch effects,
tumor heterogeneity, and variability between patients also con-
found analyses [8], [9]. Effective and robust computational
methods are therefore urgently needed to overcome these chal-
lenges and accurately detect differentially expressed genes from
such complex high-dimensional datasets across diverse cancer
types. This can support development of gene expression-based
biomarkers for precision oncology applications.

A variety of computational approaches have been applied for
cancer gene expression analysis and biomarker identification,
including machine learning, deep learning, and nature-inspired
optimization algorithms [10], [11], [12]. In particular, swarm
intelligence and evolutionary algorithms like particle swarm
optimization (PSO) [13], ant colony optimization (ACO) [14],
genetic algorithms [15], and enhanced optimizer variants [16],
[17], [18], [19] have shown promise. While achieving promis-
ing results, further improvements in accuracy, robustness, and
generalization ability are still possible. A key limitation is that
most methods rely on a single learner algorithm, which makes
it difficult to determine the universally optimal learner across
diverse cancer types and datasets. Different algorithms have
distinct strengths and weaknesses, so their performance varies.
Relying on just one also reduces robustness.

Ensemble learning methods which combine multiple diverse
base learner models can help address these pitfalls [20]. Strate-
gies like bagging [21] and boosting [22] train multiple base mod-
els on randomized or reweighted data versions, then aggregate
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predictions to reduce variance and bias. Such ensembles have
proven effective for tasks ranging from cancer subtype classifica-
tion [23], [24] to drug response modeling [25]. However, naively
combining all base learner models can limit diversity, leading
to redundant representations and suboptimal performance [26].
Recent studies have explored intelligent optimizer-guided selec-
tion of ensemble subsets to promote specialization and synergy
among members [27], [28], [29], [30], [31]. For instance, genetic
algorithms have been applied to search the space of model
combinations, selecting only classifiers that maximize validation
accuracy through cooperative interactions [32]. While show-
ing promise, these approaches generally utilize the full, high-
dimensional feature space, which can retain irrelevant variables
that confuse models and constrain diversity. Advanced feature
selection is needed to derive maximally informative biomarker
subsets tailored for ensemble learning [33]. Furthermore, diver-
sity enhancement techniques like bagging and boosting are in-
sufficient to fully overcome representation redundancies during
model training [34]. Novel forms of controlled randomness in-
jection could better promote specialization by guiding different
models to focus on distinct explanatory data facets [27], [35].
Overall there remains great opportunity to advance ensemble
classifier performance by integrating intelligent feature selec-
tion, guided diversity induction, and metaheuristic optimization
of cooperative model combinations [26], [36]. This can further
evolve the state-of-the-art in ensemble methods for precision
medicine applications.

In this work, we propose a novel nature-inspired feature se-
lection algorithm, optimized ensemble classifier, and diversity-
enhancing ensemble strategy by integrating the grey wolf op-
timizer (GWO). Our approach, called Evolutionary Optimized
Diverse Ensemble learning (EODE), synergistically combines
GWO-based wrapper feature selection, diversity injection via
randomized model training, and evolutionary optimization for
constructing optimal ensemble classifiers. Specifically, GWO
efficiently searches the high-dimensional gene expression space
to identify an informative subset of discriminative features for
cancer diagnosis. Multiple diverse base classifiers (e.g., SVM,
KNN) are trained on these selected features while introduc-
ing randomness to increase diversity. Finally, GWO optimizes
selection and integration of ensemble members to maximize
performance on validation data. EODE enhances generaliza-
tion ability by leveraging GWO’s feature selection, controlled
randomness injection, and metaheuristic ensemble optimiza-
tion. We evaluate EODE on cancer gene expression datasets
for tasks including subtype classification, outcome prediction,
and the size of feature subset. Results demonstrate EODE sig-
nificantly improves accuracy and robustness over 23 state-of-
the-art methods on 35 cancer gene expression datasets. The
integrated strategy advances biomarker discovery and preci-
sion oncology by evolving high-performance diverse ensem-
ble classifiers. The main steps of the EODE approach are as
follows:

1) Base classifiers: The diversity among the base classi-
fiers is crucial to the effectiveness of the ensemble. The
base classifiers can be any suitable classification algo-
rithms, such as decision trees, support vector machines,
or neural networks. In this study, six base classifiers

including Discriminant Analysis (DISCR), Decision Tree
(DT), K-Nearest Neighbor (KNN), Artificial Neural Net-
works (ANN), Support Vector Machine (SVM), and Naive
Bayes (NB) are used.

2) Classifier selection: To mitigate the high computational
cost associated with using ensemble methods in the feature
selection training process, all base classifiers are initially
trained with five-fold cross validation using the original
training data. The best-performing base classifier is then
selected to participate in the feature selection stage. This
approach ensures that appropriate learners are involved in
training for different datasets to a certain extent.

3) Feature selection: GWO is employed to search for an
optimal subset of genes that are most relevant to cancer
diagnosis. The fitness function is designed to evaluate the
quality of each feature subset based on classification per-
formance and the size of feature subset. GWO optimizes
the feature subset by iteratively updating the positions of
grey wolves based on their fitness values.

4) Ensemble diversity enhancement: To increase the diversity
of ensemble, the techniques such as bagging, boosting,
or random subspace method can be employed. Here, we
generate multiple random subspaces through K-means
clustering to increase the diversity of the ensemble. We
use these data clusters to train base classifiers, resulting in
a pool of models.

5) Model pool optimization: In the model pool, directly fus-
ing all models can lead to lower inference efficiency, and
the presence of some low-quality models may degrade the
overall performance. Therefore, before final model eval-
uation, we optimize the model pool. We first performed
pre-optimization, discarding models that performed below
average on the validation set. For the remaining models,
we further optimized using the GWO algorithm to select
the possible optimal combination of models.

6) Evaluation and validation: The performance of the EODE
model is evaluated using appropriate metrics such as
accuracy, average performance, and the size of the fea-
ture subset. The predictions of the selected models are
combined using plurality voting. The combined pre-
dictions provide the final classification result. More-
over, cross-validation and independent validation datasets
are used to assess the generalization ability of the
model.

II. METHODS

A. Methodology Overview of EODE

In this study, we present a novel nature-inspired method
called EODE for rapid identification of biomarker genes
for multiple cancer types in multiple cancer gene expres-
sion datasets. A schematic overview of the algorithm is
provided in Fig. 1. The original input gene expression
data Dor = {(x1, y1), . . ., (xn, yn)} is considered, where xi =
(xi,1, xi,2, . . ., xi,dim) represents a sample with dim genes, y
belongs to the set {1, 2, . . ., c} indicating the consensus molec-
ular subtypes, and n is the total number of samples.
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Fig. 1. Overview of the proposed EODE algorithm: In the GWO feature selection phase, the original cancer gene expression training data is utilized to train all
base classifiers, and the classifier with the highest performance is selected as the evaluation classifier. The processed data is then optimized to construct an ensemble
model. Specifically, the training data is incrementally clustered using the K-means method to form subspace clusters. These clusters are used to train individual
base classifiers, which are then added to the model pool. Any classifiers in the pool with below-average performance are filtered out. Next, the GWO is applied
to optimize the classifier pool and determine the best possible ensemble combination. Finally, the optimized ensemble model is evaluated on the independent test
dataset using a plurality voting strategy to generate the final cancer type predictions.

In the feature selection step, we employ the GWO to extract
relevant biomarker genes after training our model on the training
gene expression matrix Dtr. Each base classifier from the pool
B (including Discriminant Analysis (DISCR), Decision Tree
(DT), K-Nearest Neighbor (KNN), Artificial Neural Networks
(ANN), Support Vector Machine (SVM), and Naive Bayes (NB))
is initially trained using the input data. The best-performing
classifier is then chosen as the evaluation classifier for feature
selection.

The processed data is subsequently utilized to train and
optimize a diverse ensemble model. Specifically, the data un-
dergoes five-fold cross-validation to construct the final model
Ψ. Initially, the data is partitioned into progressive subspaces
using the K-means method to form clusters. These clusters are
then utilized to train base classifiers, which are subsequently
incorporated into the model pool. Models in the pool with

below-average performance are filtered out. After that, the GWO
approach is applied to optimize the model pool and identify the
best possible combination. Finally, the model Ψ is evaluated
on the test data using a plurality voting strategy. The overall
framework of EODE is summarized in Algorithm 1.

B. Nature-Inspired Feature Selection

Considering a training cancer gene expression data Dtr =
{(x1, y1), . . ., (xn, yn)}, where xi = (xi,1, xi,2, . . ., xi,dim)
represents the feature vector and dim denotes the number of
features, y belongs to the set {1, 2, .., c} representing the class,
and n is the number of samples. It is important to note that
the high-dimensional nature of the gene expression data may
include many irrelevant genes, which can negatively impact
identification accuracy while increasing computational time [7].
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Algorithm 1: Pseudo Code of EODE Algorithm.

Require: Training Data: Dtr = {(xtr,1, ytr,1), . . .,
(xtr,n, ytr,n)}, x ∈ Rd, y ∈ {1, 2, . . ., c}, Test Data:
Dte = {(xte,1, yte,1), . . ., (xte,n, yte,n)}, a set of base
classifiers B, upper bounds of clustering K, population of
GWO �X , the feature selection function f1, the classifiers
optimization function f2

1: Use training data Dtr to train each base classifier in B
2: The classifier b with the best performance is selected for

feature selection
3: Initialize a population of | �X| individuals
4: while t < max iterations T do
5: �X ←− Use Algorithm 2 to do f1( �X)

6: �Xi ←− best individual
7: t++;
8: end while
9: bf ←− best features selected by wolf �Xi

10: fnum←− the number of features selected by wolf �Xi

11: Dtr ←− Dtr(bf)
12: Dte ←− Dte(bf)
13: Dtr = Dtr,1 ∪ . . . ∪ Dtr,5,Dtr,i ∩ Dtr,j = ∅(i �= j)
14: for each Dtr,i in Dtr do
15: D−itr = Dtr −Dtr,i

16: for k = 1 −→ K do
17: CS ←− partition D−itr into k clusters
18: S = S + 1
19: end for
20: for each mpi inMP do
21: Acc(i)←− calculate each mpi’s validation accuracy

on Dtr,i

22: end for
23: MP ←− (mpi if Acc(mpi) > mean(Acc))
24: Initialize a population of | �X| individuals
25: while t < max iterations T do
26: �X ←− Use Algorithm 2 to do f2( �X)

27: �Xi ←− best individual
28: t++;
29: end while
30: ψ ←− best models inMP selected by wolf �Xi

31: Optimized classifier Ψ←− Ψ+ ψ
32: end for
33: testAcc←− classify samples of Dte by Ψ
34: Output: The optimized ensemble classifier Ψ, the

number of selected features fnum and the test accuracy
testAcc

Therefore, performing feature selection is crucial to preprocess
the data effectively.

The Grey Wolf Optimizer (GWO), initially proposed by
Mirjalili [37], is a swarm intelligence algorithm inspired by
the social hierarchy and hunting behavior of grey wolves in
nature. GWO offers advantages such as good convergence,
minimal parameter tuning, and ease of implementation [38]. The
core concept of GWO revolves around three primary predation
behaviors: encircling prey, hunting, and attacking prey, which

Fig. 2. GWO algorithm is illustrated in a schematic representation, highlight-
ing the process of updating the positions of the wolves. Initially, the positions
of the wolves are randomly initialized within the solution space. The fitness of
each wolf is evaluated based on a fitness function. In each iteration, the positions
of the wolves are updated using mathematical formulas that consider the social
hierarchy, with the α wolf having the greatest influence. The update process
involves attracting other wolves towards the positions of the α, β, and δ wolves.
This iterative position updating continues until a termination condition is met.
Ultimately, the position of the α wolf represents the best solution found by the
GWO algorithm.

are performed based on the social hierarchy among the wolves.
The social hierarchy in GWO consists of four levels:α, β, δ, and
ω, with α being the dominant wolf, followed by β and δ, while
the remaining wolves are labeled as ω. Wolves at higher ranks
exert dominance over those at lower ranks, and α, β, and δ play
key roles in the algorithm, withα being the wolf king andβ and δ
serving as potential successors. The α wolf represents the fittest
solution and guides the pack towards promising search areas.
The second and third best fit solutions are modeled as β and
δ wolves, respectively. The ω wolves represent the remaining
weaker candidate solutions that follow the guidance of the α,
β and δ wolves. During optimization, the candidate solutions
iteratively update their positions towards the best three solutions
until convergence upon the global optimal value. Specifically, a
schematic representation of GWO is depicted in Fig. 2.

Building upon these foundations, we propose a nature-
inspired feature selection method based on GWO, which com-
prises six essential components: classifier selection, population
initialization, encircling prey phase, hunting phase, attacking
phase, and feature selection objective function.

1) Classifier Selection: To evaluate the feature selection re-
sults, we consider six base classifiers in a classifier pool B:
Discriminant Analysis (DISCR), Decision Tree (DT), K-Nearest
Neighbor (KNN), Artificial Neural Networks (ANNs), Support
Vector Machine (SVM), and Naive Bayes (NB). However, in-
corporating all these classifiers into the ensemble method during
the feature selection phase would be computationally expensive.
Therefore, we adopt a pre-training approach to select the best-
performing classifier from the pool B. The cancer gene expres-
sion data D is subjected to five-fold cross-validation on each
base classifier, and the classifier with the highest performance is
chosen as the evaluation classifier for the feature selection phase.
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This approach allows us to efficiently select the most suitable
classifier for the subsequent feature selection process.

2) Population Initialization: In the beginning, the popula-
tion �X is randomly created and represented as real num-
bers. Each individual, denoted as �Xi, is a set of genes: �Xi =
{g1, g2, . . ., gdim}, where gdim represents the dimth gene and
dim is the total number of genes.

To convert these real numbers into a binary form, we use a
threshold value θ. If a feature value (gn) is greater than or equal
to θ, it is set to 1, indicating that the corresponding feature is
selected. On the other hand, if gn is less than θ, it is set to 0,
indicating that the feature is not selected. The process can be as
follows:

gn =

{
1, gn ≥ θ
0, gn < θ

. (1)

After that, the position of each individual is represented by a
binary (0/1) string.

3) Encircling Prey Phase: The “encircling prey” behavior is
a strategy employed by the grey wolf pack to search for feature
subsets. This behavior is mathematically modeled to simulate
how the grey wolf gradually approaches its prey and surrounds
it. The distance ( �D) between the grey wolf and the prey is
determined by the equation

�D = |2 · r2 · �Xp(t)− �Xi(t)|, (2)

where �D represents the distance between them. During the
search process, the current iteration is denoted by t, and �Xp(t)

and �Xi(t) represent the position vectors of the prey and the grey
wolf, respectively.

To update the position of the grey wolf, we utilize the
formula �Xi(t+ 1) = �Xp(t)− (2�a · r1 − �a) · �D. Here, �a is the
convergence factor that decreases linearly from 2 to 0 as the
iterations progress. The convergence factor is calculated as
�a = 2− 2t/maxt, where t represents the current iteration, and
maxt is the maximum number of iterations defined for the search
process. Additionally, r1 and r2 are random numbers between
0 and 1.

By applying this position update formula, the grey wolf
adjusts its position towards the prey. The term (2�a · r1 − �a)
determines the magnitude and direction of the movement, while
the distance �D guides the grey wolf’s movement in narrowing
the gap with the prey. The process continues iteratively until the
desired maximum number of iterations is reached (maxt). Ulti-
mately, the grey wolf is expected to encircle the prey, indicating
the discovery of a promising feature subset.

4) Hunting Phase: Grey wolves possess the ability to iden-
tify the general location of their prey and work together to
surround it. However, in many unknown situations, they may not
have precise knowledge of the exact location of the target. In our
study, we simulate the behavior of grey wolves by introducing
three key individuals: α, β, and δ. These individuals help guide
the entire wolf pack in surrounding the prey and searching for
the optimal solution.

Algorithm 2: Pseudo Code of Grey Wolf Optimizer (GWO).

1: Initialize a population �X of wolves randomly within the
solution space

2: Evaluate the fitness of each wolf �Xi using a fitness
function f

3: Set the initial values for α, β, and δ as the wolves with
the highest, second highest, and third highest fitness,
respectively

4: while t < max iterations T do
5: for each wolf �Xi in the population do
6: Update the position of the wolf based on the

positions of α, β, and δ using the following
formulas:

7: �Dα = | �C1 · �Xα − �Xi| // Distance from α

8: �Dβ = | �C2 · �Xβ − �Xi| // Distance from β

9: �Dδ = | �C3 · �Xδ − �Xi| // Distance from δ

10: �X ′ = �Xα −A1 · �Dα // Encircling α
11: �Y ′ = �Xβ −A2 · �Dβ // Encircling β
12: �Z ′ = �Xδ −A3 · �Dδ // Encircling δ
13: Update the position of the wolf using:
14: �Xi(t+ 1) = ( �X ′ + �Y ′ + �Z ′)/3
15: Apply boundary constraints to ensure the new

position is within the solution space
16: end for
17: Update the fitness of each wolf �Xi using a fitness

function f
18: Update α, β, and δ based on the updated fitness values
19: t++;
20: end while
21: Output: The position of the α wolf represents the best

solution found by the GWO algorithm

To track the position of the prey, each individual grey wolf
calculates its distance to the prey using the following equations:

�Dα = | �C1 · �Xα − �Xi|, (3)

�Dβ = | �C2 · �Xβ − �Xi|, (4)

�Dδ = | �C3 · �Xδ − �Xi|. (5)

Here, �Dα, �Dβ , and �Dδ represent the distances between the
grey wolves α, β, δ and the prey, respectively. �Xα, �Xβ , and
�Xδ denote the positions of α, β, and δ, while �Xi represents the

current position of the grey wolf. Additionally, �C1, �C2, and �C3

are random vectors used to calculate these distances.
Each grey wolf updates its position based on these distance

calculations

�X ′ = �Xα −A1 · �Dα, (6)

�Y ′ = �Xβ −A2 · �Dβ , (7)

�Z ′ = �Xδ −A3 · �Dδ. (8)

Here, �X ′, �Y ′, and �Z ′ represent the new positions of the grey
wolves moving towards α, β, and δ, respectively. The constants
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A1,A2, andA3 control the magnitude of the movement towards
the prey.

Finally, the position of the grey wolf at the next time step
�Xi(t+ 1) is determined as the average of the positions �X ′, �Y ′,

and �Z ′

�Xi(t+ 1) =
�X ′ + �Y ′ + �Z ′

3
. (9)

In this way, the entire wolf pack moves together towards the
positions of α, β, and δ, and the new position of each individual
is updated accordingly.

5) Attacking Phase: The final stage of the hunting process is
the attack, during which the grey wolves aim to capture their prey
and obtain the optimal solution. This phase involves adjusting
certain parameters to strike a balance between global exploration
and local exploitation.

To achieve this balance, two key parameters are considered:
a and A. The value of a is progressively decreased from 2 to
0 in a linear manner. Simultaneously, the range of fluctuations
in A is reduced. The parameter A takes on values within the
range [−a, a]. The behavior of the grey wolves is influenced by
the magnitude of A. When the absolute value of A is greater
than 1, the grey wolves tend to spread out across different areas,
enabling a global search for prey. Conversely, when the absolute
value ofA is less than 1, the grey wolves exhibit a more focused,
local search.

In addition to these parameters, the influence of the grey
wolves’ positions on the prey is governed by a random weight,
denoted as C. This weight, which ranges between 0 and 2,
determines the random influence of the grey wolf’s location
on the prey. A value of C greater than 1 indicates a higher
weight, emphasizing the significance of the grey wolf’s position
in guiding the search. Conversely, a value of C less than 1
assigns a lower weight, reducing the impact of the grey wolf’s
location. This random weight, C, helps prevent the algorithm
from converging too early and becoming trapped in a local
optimum.

By dynamically adjusting the values of a, A, and C during
the attacking phase, the grey wolves strike a balance between
exploration and exploitation, allowing them to efficiently search
for and capture the optimal solution while avoiding premature
convergence and local optima.

6) Feature Selection Objective Function: During each iter-
ation of the GWO algorithm, the classification label for each
candidate solution �Xi is predicted using the evaluation classifier
selected from the classifier selection phase. Specifically, the
evaluation classifier is initially trained on the original training
gene expression dataset Dtr with all features using five-fold
cross-validation. For each �Xi containing a subset of selected
features, the evaluation classifier generates predicted labels y′i
by classifying the corresponding data points from Dtr using
only the selected features in �Xi. The performance of y′i on
Dtr determines the fitness value assigned to solution �Xi. This
allows the GWO algorithm to determine theα,β, and δ solutions
representing the current best feature subsets for classification.

In the feature selection stage, the primary objective is to
identify and select relevant features while filtering out redun-
dant ones for subsequent identification purposes in cancer gene
expression data. Traditional studies often focus solely on clas-
sification accuracy, disregarding the resource costs associated
with redundant features. In our study, we address this limitation
by considering both classification accuracy and the size of the
feature subsets as part of our feature selection objective func-
tion [39].

The objective function, denoted as f1, is defined as follows:

f1 = α ∗ error + β ∗ fnum

dim
. (10)

Here, fnum represents the number of selected features during
the evolutionary process, and dim represents the total number
of features in the dataset. To strike a balance between the two
objectives, we introduce weight coefficients to control their
relative importance. In our study, we assign a weight of 0.9 to α
to emphasize the significance of classification accuracy, while
β is set to 0.1 to underscore the importance of the feature subset
size. These weight coefficients were determined based on the
findings in the reference [40], where classification accuracy was
identified as the primary objective.

The classification error (error) is a key component of the
objective function. It is calculated as the difference between 1
and the accuracy (acc), which is defined as

error = 1− acc, (11)

acc =

∑n
s=1 I(y

′
s, ys)

n
. (12)

In the above equations, n represents the total number of
instances, y′s represents the predicted class label for instance s,
and ys represents the true class label for instance s. The function
I(y′s, ys) evaluates to 1 if the predicted and true class labels
match, and 0 otherwise.

C. Nature-Inspired Diverse Ensemble Learning

In this section, we propose a novel nature-inspired diverse
ensemble learning method to improve the performance of cancer
identification using selected features obtained through nature-
inspired feature selection. Our method comprises diverse sub-
space generation, model pool generation, and model pool opti-
mization.

1) Diverse Subspace Generation: Given the gene ex-
pression data after feature selection, denoted as D′tr =
{(x1, y1), . . ., (xm, ym)}, where xi = (xi,1, xi,2, . . ., xi,dim)
represents the feature vector with dim denoting the number
of features, y ∈ {1, 2, . . ., c} represents the classification label,
and m represents the number of input samples, we employ the
K-means method [41] to cluster the input cancer gene expression
data into multiple clusters. The clustering process is performed
iteratively from 1 to t, generating K clusters in each iteration.
Here, t denotes the total number of iterations. The clusters are
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obtained by minimizing the following function:

argmin
S

K∑
i=1

∑
x∈Si

||x− μi||2, (13)

where x represents the feature vector and μi is the centroid of
cluster Si. This clustering process generates a set of diverse
subspaces composed of all the obtained clusters.

2) Model Pool Generation: Each cluster in the diverse sub-
space is used to train six classifiers (DISCR, DT, KNN, ANN,
SVM, and NB) to create a model pool. The base classifiers
used in this step are independent. The resulting models are
then added to the base model poolMP . The base model pool
MP consists of l ∗ |B| models, where l represents the number
of clusters and |B| represents the number of base classifiers.
Finally, we employ nature-inspired optimization techniques to
refine the base models in the ensemble. Here, any combination
of classifiers can be utilized.

3) Model Pool Optimization: After obtaining the diverse
base model poolMP , we propose a pre-optimization step to re-
fineMP by removing models with below-average performance.
Subsequently, we incorporate a nature-inspired optimization
method, namely GWO, to further optimize the pre-optimized
base model poolMP .

Population Initialization: The population is randomly initial-
ized, and each individual is represented as follows:

�Xi = {mp1,mp2, . . .,mpr}. (14)

Here,mpr represents a classifier in the model poolMP , and r
is the total number of models inMP . Similar to nature-inspired
feature selection, the selection or non-selection of models is
indicated by binary values. “1” indicates that a model is selected,
while “0” indicates that the model is not selected. To convert the
continuous search space of GWO into a binary search space,
we introduce a threshold θ. The conversion from a continuous
position to discrete binary values is defined as follows:

mpr =

{
1, mpr ≥ θ
0, mpr < θ

. (15)

Nature-inspired Optimization Process: In this phase, our aim
is to discover optimal model subsets by optimizing the base
model pool MP . The population is used to explore optimal
model subsets in the encircling phase, identify potential optimal
solutions in the hunting phase, and ultimately obtain the optimal
solution in the attacking phase.

Ensemble Optimizing Objective Function: Our objective is to
achieve the highest identification performance with the smallest
ensemble size. After clustering the data following feature selec-
tion and training the base classifiers to create a model pool, we
aim to optimize the model pool to obtain the optimal ensemble
model with the smallest size. The optimized model ensemble
is then evaluated using the test data. The objective function in
the model pool optimization stage, denoted as f2, is defined as
follows:

f2 = α ∗ error + β ∗ |ψ|
r
. (16)

Here, error represents the identification error rate described
in (11), |ψ| is the total number of selected models, and r is the
number of models inMP . The settings of α and β are identical
to those in Section II-B6, with α accounting for 90% of the
importance and β for 10%.

However, unlike in Section II-B6, where the predicted label
y′s is predicted by a single classifier, we consider the ensemble
of multiple models. We employ a plurality voting method to
combine the predictions of multiple models, which has been
proven to be a simple and effective ensemble fusion technique
in many studies [42], [43].

4) Ensemble Classifier Prediction: During the training pro-
cess, we obtain multiple modelsψ to represent the modelΨ. The
model Ψ is used to generate an ensemble, and all models in Ψ
are utilized to predict the test set. The predicted class labels y′s
from all the models in the model Ψ are fused using the plurality
voting method. The identification accuracy can be calculated
using (12).

D. Time Complexity Analysis

Here, we analyze the time complexity of our proposed EODE
algorithm. The detailed analysis is outlined as follows:
� Feature Selection: The time complexity of the feature

selection process depends on the algorithm used. Since
we used GWO for feature selection, the time complexity is
typically O(T × P × F × C), where T is the number of
generations, P is the population size, F is the number of
features, and C is the complexity of the fitness evaluation
function. Generally, the feature selection process has a
polynomial time complexity.

� Diverse Subspace Generation: The time complexity of
the diverse subspace generation mainly depends on the
clustering algorithm used. Here, we applied the K-
means algorithm, the time complexity is usually O(K ×
N × I × d), where K is the number of clusters, N is
the number of data points, I is the number of itera-
tions, and d is the dimensionality of the data. The di-
verse subspace generation process has a polynomial time
complexity.

� Model Pool Generation: The model pool generation in-
volves training multiple base classifiers on each cluster.
The time complexity depends on the complexity of the base
classifiers and the number of clusters. Assuming the time
complexity of training a base classifier on a single cluster is
O(N × F × C), where N is the number of data points, F
is the number of selected features, andC is the complexity
of the training algorithm, the overall time complexity of
model pool generation isO(L×N × F × C), where L is
the number of clusters. This process also has a polynomial
time complexity.

� Model Pool Optimization: The time complexity of the
model pool optimization stage depends on the optimiza-
tion algorithm used. We employed a nature-inspired opti-
mization algorithm named GWO, the time complexity is
typicallyO(T × P × C), where T is the number of gener-
ations, P is the population size, andC is the complexity of
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TABLE I
THIRTY-FIVE DIFFERENT GENE EXPRESSION DATASETS; EACH DATASET SHOWING THE TISSUE TYPE, NUMBER OF SAMPLES, FEATURES, AND CLASSES

the fitness evaluation function. Similar to the feature selec-
tion process, the model pool optimization stage generally
has a polynomial time complexity.

� Ensemble Classifier Prediction: The time complexity of the
ensemble classifier prediction is dependent on the number
of models in the ensemble and the complexity of combining
their predictions. Assuming we have M models in the
ensemble and the complexity of combining predictions is
O(M), the overall time complexity isO(M). This process
has a linear time complexity.

In summary, the overall time complexity is: Overall Time
Complexity = Feature Selection + Diverse Subspace Genera-
tion + Model Pool Generation + Model Pool Optimization +
Ensemble Classifier Prediction = O(T × P × F × C) + O(K ×
N × I × d) + O(L × N × F × C) + O(T × P × C) + O(M)

Since all these time complexities are polynomial, we can
express the overall time complexity as the highest-order term
in the sum. Therefore, the overall time complexity of the EODE
algorithm is

Overall Time Complexity =max{T × P × F × C, K × N ×
I × d, L × N × F × C, T × P × C, M}

III. IMPLEMENTATION

A. Datasets

The cancer gene expression datasets were collected from [44],
and can be downloaded from the website https://schlieplab.org/
Static/Supplements/CompCancer/datasets.htm. The 35 datasets
contain multiple types of cancers with high-dimensional fea-
tures, exceeding 1,000 dimensions, while having relatively small
sample sizes (as shown in Table I). This poses the “Curse of
Dimensionality” challenge, necessitating the development of a
computational model with high robustness and good generaliza-
tion capabilities to address the different cancers.

To enable rigorous evaluation, the collected raw datasets
have been randomly split into disjoint training and testing
sets in a 80:20 ratio prior to conducting experiments. The
training sets, comprising 80% of the data, have been used for
model training and hyperparameter tuning. The testing sets,

comprising the held-out 20% of the data, have only been
used for final evaluation of the fully trained model’s perfor-
mance. This ensures an unbiased estimate of generalization
capability. The precise training/testing splits has been done
randomly while preserving class balance in each set. Specifi-
cally, the training and testing datasets can be downloaded from
the following links: https://github.com/wangxb96/EODE/tree/
master/TrainData and https://github.com/wangxb96/EODE/
tree/master/TestData. For model selection and hyperparameter
tuning, k-fold cross-validation (k=5) was utilized during model
selection and hyperparameter optimization on the training data
only. By segregating the training and testing data, we prevent
information leakage and overfitting to the test set. This rigorous
methodology allows us to evaluate true generalization error and
robustness across multiple cancer types.

B. Baselines

To evaluate the effectiveness of our proposed method, we
compared it against several existing classifiers and ensemble
algorithms widely used in the literature. First, we compared our
model with six base classifiers: DISCR (Discriminant Analy-
sis) [45], DT (Decision Tree) [46], KNN (K-Nearest Neigh-
bor) [47], ANN (Artificial Neural Networks) [48], SVM (Sup-
port Vector Machine) [49], and NB (Naive Bayes) [50]. These
classifiers serve as the baseline for performance comparison.

Next, we compared our approach with seven evolutionary
algorithms: ACO [51], CS [52], DE [53], GA [54], GWO [37],
PSO [55], and ABC [56]. These algorithms are widely used
for optimization problems. Furthermore, we evaluated our ap-
proach against four novel ensemble methods: PSOEL [27],
EAEL [57], FESM [58], and GA-Bagging-SVM [59]. These
methods were selected to demonstrate the effectiveness of our
proposed approach in comparison to recent advancements in
ensemble learning.

In addition, we compared our ensemble algorithm with six
state-of-the-art ensemble classifiers: Random Forests (RF) [60],
ADABOOST [22], RUSBOOST [61], SUBSPACE [62], TO-
TALBOOST [63], and LPBOOST [64]. Random Forests is
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TABLE II
PARAMETERS OF DIFFERENT MACHINE LEARNING METHODS

a well-known bagging method [60], while ADABOOST is a
popular boosting method [22]. RUSBOOST is a random un-
dersampling boosting method designed to address class imbal-
ance [61]. SUBSPACE trains random feature subsets to reduce
estimator correlation [62]. TOTALBOOST and LPBOOST aim
to maximize the minimal margin of learned ensembles and have
the ability to self-terminate [63], [64].

By comparing our method against these diverse algorithms,
we aim to showcase its superiority and effectiveness in ad-
dressing the cancer gene expression data classification problem.
Moreover, we have opened all computational model for pub-
lic accessibility at “https://github.com/wangxb96/EODE/tree/
master/ComparisonAlgorithms”.

C. Parameter Settings

Our experiments were conducted on a desktop computer with
the following specifications: an Intel(R) Core(TM) i7-10700KF
CPU @3.80 GHz, 32 GB of RAM, and a 64-bit Windows 10
operating system using Matlab 2021a. We utilized six base
classifiers, namely DISCR, DT, KNN, ANN, SVM, and NB,
to construct the ensemble. The parameters for DISCR, KNN,
SVM, and NB are summarized in Table II, while the rest of the
classifiers were used with their default settings. Additionally,
Random Forest (RF) [60], ADABOOST [22], RUSBOOST [61],
SUBSPACE [62], TOTALBOOST [63], and LPBOOST [64]
were employed with their default parameter values. Further-
more, the parameters for four novel ensemble classifier methods,
namely PSOEL [27], EAEL [57], FESM [58], and GA-Bagging-
SVM [59], were set to be consistent with the original papers.

In our experiments, the original data was randomly divided
into training and test datasets with an 8:2 ratio. The five-fold
cross-validation method was used for training the data. For the
GWO algorithm in feature selection and ensemble optimization,
the population size (P ) was set to 100, the number of iterations
was set to 50, and the threshold (θ) was set to 0.5. Specifically, the
threshold value θ in our study is utilized as a criterion within the
Grey Wolf Optimizer algorithm to determine feature selection,
and is not directly related to actual gene expression values
themselves. In the clustering phase, the parameter t was set to
5
√
m. The detailed parameters of seven classical evolutionary

algorithms, including ACO [51], CS [52], DE [53], GA [54],
GWO [37], PSO [55], and ABC [56], are summarized in
Table III, where the population size (P ) and the maximum
iteration (maxt) are set to the same values.

For ACO, “tau” denotes the pheromone value, “eta” de-
notes the heuristic desirability, “alpha” denotes the control
pheromone, “beta” denotes the control heuristic, and “rho”
denotes the pheromone trail decay coefficient, which is set to
0.2. For CS, “Pa” denotes the discovery rate, “alpha” denotes

TABLE III
PARAMETERS OF DIFFERENT EVOLUTIONARY ALGORITHMS

the constant, and “beta” denotes the Levy component. For DE,
“CR” denotes the crossover rate, and “F” denotes the scale factor.
For GA, “CR” denotes the crossover rate, and “MR” denotes the
mutation rate. For PSO, “c1” denotes the cognitive factor, “c2”
denotes the social factor, “w” denotes the inertia weight, and
“Vmax” denotes the maximum velocity.

IV. RESULTS AND ANALYSIS

A. Performance Comparisons With Other Nature-Inspired
Ensemble Learning Algorithms

In our study, we conducted performance comparisons of
EODE with several other nature-inspired ensemble learning
algorithms, namely PSOEL, EAEL, FESM, and GA-Bagging-
SVM. The experimental results are summarized in Fig. 3, where
Fig. 3(A) presents detailed classification results, Fig. 3(B) il-
lustrates the performance comparisons of EODE against the
other ensemble methods, and Fig. 3(C) showcases the average
performance values of these methods.

As shown in Fig. 3(A), EODE achieved the best results among
all methods on 26 out of the 35 datasets. Specifically, EODE
attained 100% classification accuracy on 7 datasets and achieved
over 90% accuracy on more than half of the datasets. These
results highlight the robustness of EODE in handling various
types of cancers and its ability to provide highly accurate classi-
fications. From Fig. 3(B), it is evident that EODE outperformed
the other nature-inspired ensemble learning algorithms. The
performance comparisons clearly demonstrate the superiority
of EODE in terms of test accuracy. To provide a comprehensive
performance overview, we present the average performance
across all 35 cancer gene expression datasets in Fig. 3(C).
The results indicate that EODE outperformed PSOEL by 6%
and exhibited more than a 10% improvement compared to the
other methods. These findings strongly support the conclusion
that EODE performs better than other nature-inspired ensemble
methods in the context of cancer gene expression classification.

B. Performance Comparisons of Different Machine Learning
Algorithms

In our study, we conducted a comprehensive analysis and
comparison of the performance between our proposed ensemble
approach, EODE, and single classifier approaches. The experi-
mental results, as shown in Fig. 4, clearly demonstrate the superi-
ority of EODE in terms of classification accuracy for cancer gene
expression datasets. EODE achieved the best classification accu-
racy for over 55% of the datasets, surpassing all single classifiers.
This indicates the effectiveness and robustness of our ensemble
approach in handling cancer gene expression classification tasks.
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Fig. 3. Performance comparison to the other nature-inspired ensemble learn-
ing algorithms. (a) Test classification results of EODE and four other nature-
inspired ensemble methods across the 35 cancer gene expression datasets. (b)
Comparison graphs of EODE and the other four nature-inspired ensemble meth-
ods. (c) The average performance of EODE and the other four nature-inspired
ensemble methods across the 35 cancer gene expression datasets.

Moreover, when considering the average performance across
all 35 cancer gene expression datasets, EODE consistently
outperformed all single classifiers. Specifically, our ensemble
approach exhibited remarkable improvements compared to the
worst classifier, with an increase in performance of nearly
33%. Furthermore, EODE consistently achieved performance
improvements of more than 10% compared to the majority of
the base classifiers.

These findings clearly highlight the advantages of our ensem-
ble approach over traditional single classifier methods. By lever-
aging the collective wisdom of multiple classifiers, EODE effec-
tively addresses the challenges posed by cancer gene expression
classification, resulting in superior classification accuracy and
overall performance. Fig. 4 provides a visual representation
of the experimental results, further supporting the conclusions
drawn from our performance comparisons. The results validate
the effectiveness of our proposed ensemble approach, highlight-
ing its potential as a valuable tool in the field of cancer gene
expression analysis.

Fig. 4. Performance comparisons of the different machine learning algorithms.
The first 7 graphs represent the test classification accuracy on the different cancer
gene expression datasets, and the last graph indicates the average performance
of the seven methods on the 35 datasets.

C. Performance Comparisons of the Different Evolutionary
Algorithms

To further evaluate the performance of the proposed EODE
method, we compared it against other state-of-the-art evolu-
tionary algorithms, including: Ant Colony Optimization (ACO),
Cuckoo Search (CS), Differential Evolution (DE), Genetic Al-
gorithm (GA), Grey Wolf Optimizer (GWO), Particle Swarm
Optimization (PSO), and Artificial Bee Colony (ABC).

The experimental results are summarized in supplementary
Figs. 1 and 2. Supplementary Fig. 1 shows the classification
accuracy of different methods on each of the 35 cancer gene
expression datasets, with the first 7 sub-figures presenting results
on individual datasets and the last sub-figure reporting the aver-
age performance across all datasets. As seen in supplementary
Fig. 1, EODE obtains the best classification accuracy on over
60% of the datasets. Notably, there is an improvement of 5-8%
in average classification accuracy achieved by EODE compared
to other evolutionary algorithms. Supplementary Fig. 2 depicts
the number of features (i.e., biomarker genes) selected by each
method on each dataset. We can observe that EODE selects the
smallest feature subset in nearly 60% of datasets, indicating its
ability to identify the most informative genes.

Overall, from both supplementary Figs. 1 and 2, we can
deduce that EODE consistently demonstrates the best average
performance across all 35 cancer gene expression datasets,
outperforming other state-of-the-art evolutionary methods. This
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Fig. 5. Performance comparisons of the different ensemble learning algo-
rithms. (a) Test classification results of EODE and six other ensemble methods
across the 35 cancer gene expression datasets. (b) The average performance of
EODE and the six other ensemble classifiers on the 35 datasets. (c) Graphs of
EODE versus the other ensemble classifiers, where RF denotes Random Forest.

validates the effectiveness and robustness of the proposed EODE
approach in discovering critical biomarker genes for cancer
classification.

D. Performance Comparisons of the Different Ensemble
Learning Algorithms

To further validate the effectiveness of the proposed EODE
method, we conducted experiments comparing its performance
to other state-of-the-art ensemble learning classifiers on the
35 cancer gene expression datasets. The methods consid-
ered for comparison include: Random Forest (RF) [60], AD-
ABOOST [22], RUSBOOST [61], SUBSPACE [62], TOTAL-
BOOST [63] and LPBOOST [64].

The results are shown in Fig. 5. Fig. 5(A) depicts a heat map of
the classification accuracy of different methods on each of the 35
datasets, where darker colors indicate better performance. This
heat map visualization allows us to qualitatively compare the
performance of models across various cancer types. Fig. 5(B)
summarizes the mean classification accuracy of each method
averaged over the 35 datasets. The proposed EODE method
achieves 6-32% better performance compared to other ensemble
learning classifiers, demonstrating its superior predictive ability.
Fig. 5(C) presents box plots to compare the distribution of
classification accuracies obtained by each method on different
datasets. We can observe that the median accuracy of EODE is
higher than all other methods, indicating its stable and robust
performance. Moreover, the box plot of EODE is more narrow
compared to others, showing the consistency of results obtained.

Overall, these quantitative and qualitative comparisons pre-
sented in Fig. 5 validate that the proposed EODE method
achieves the best classification accuracy on over 70% of the
cancer gene expression datasets, outperforming other state-of-
the-art ensemble classifiers. This clearly demonstrates the ef-
fectiveness and robustness of the EODE approach for cancer
classification using gene expression data.

E. Ablation Study

1) Performance of EODE Without Ensemble Learning: Ta-
ble IV presents a comprehensive evaluation of training and test-
ing performance across 35 datasets using the proposed EODE
approach against EODE without ensemble learning (WEL).
Here, WEL means the nature-inspired diverse ensemble learning
is not employed. On analysis, it is evident that the training
accuracy of both EODE and WEL are comparable, with the
EODE approach achieving a slightly higher average training
accuracy of 0.9524 versus 0.9498 for WEL. This indicates that
the model capacity for fitting the training data is similar between
the two approaches. However, EODE demonstrates a significant
test accuracy advantage over WEL, with average test accuracies
of 0.8620 and 0.5456 respectively. This translates to an absolute
improvement of over 30% in generalization performance by
leveraging ensemble learning.

The key insight is that while ensemble learning does not
markedly improve training fit, it provides superior generaliza-
tion through effectively preventing overfitting. Single models
are prone to overfitting the noise in small datasets. Ensemble
learning creates multiple diverse models and aggregates their
predictions, avoiding these spurious patterns. Across multiple
datasets, EODE consistently exhibits stronger generalization,
evidenced by the significantly higher test accuracies. This gap is
particularly prominent in smaller datasets where individual mod-
els tend to overfit more. By reducing variance via ensembling,
the proposed approach demonstrates more robust predictions
on unseen test data. The results validate the effectiveness of
ensemble learning in enhancing model generalization capability
and tackling the overfitting challenge.

In conclusion, the ensemble framework shows considerable
promise in boosting test performance over single model baseline
across a wide range of conditions. This has important implica-
tions for real-world applications like speech emotion recognition
where avoiding overfitting is critical. The analysis provides
strong empirical evidence and rationale for adopting ensemble
techniques.

2) Performance of EODE Ensemble versus Individual Clas-
sifiers: Unlike the analysis in Section IV-B, this study does not
evaluate each base classifier model in isolation. Rather, this
section investigates the impact of using a single base classifier
within the nature-inspired diverse ensemble learning phase of
the proposed approach, instead of aggregating multiple hetero-
geneous classifiers concurrently as intended in the ensemble
methodology. By focusing on the ensemble learning stage, this
analysis provides targeted insight into the benefits of leveraging
diversity in the classifier combinations compared to relying on
any individual modeling paradigm alone during this critical step.
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TABLE IV
PERFORMANCE ON TRAINING AND TESTING SETS WITH AND WITHOUT ENSEMBLE LEARNING (WEL) METHOD

TABLE V
PERFORMANCE OF EODE ENSEMBLE VERSUS INDIVIDUAL BASE CLASSIFIERS

As shown in Table V, across the 35 gene expression datasets
analyzed, the best single classifier achieved an average accuracy
of 0.8076 using a DISCR model. In contrast, the proposed
EODE ensemble approach attained a significantly higher
accuracy of 0.8620 by leveraging an integrated combina-
tion of diverse classifiers including DISCR, DT, KNN,
ANN, SVM and NB. The results highlight that relying on
any individual base classifier is suboptimal compared to the
ensemble approach. No single modeling paradigm consistently
dominates the performance across all datasets, due to the com-
plexity of the classification problem. Different datasets exhibit

variability in terms of which individual classifier achieves the
best performance when used alone. However, EODE provides
equal or higher accuracy relative to the top stand-alone model
on 23 out of 35 datasets. The results empirically demon-
strate that integrating multiple complementary base classi-
fiers simultaneously is essential to maximize the potential
of the ensemble framework and attain optimal classification
performance on gene expression data. Reliance on any sin-
gle constituent classifier within the ensemble learning process
fails to harness the full synergistic advantages of the diverse
ensemble.
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V. CONCLUSION

Cancer type identification is a critical aspect of cancer re-
search, as it enables early diagnosis and tailored treatment
for patients. One key challenge in this field is identifying the
highly sensitive biomarker genes that are indicative of specific
cancer types. In this study, we propose a novel approach called
EODE to address the classification of cancer types, particularly
in scenarios where the gene expression profile samples are
high-dimensional and small in size. EODE leverages the grey
wolf optimizer (GWO) to optimize feature subsets and collabo-
ratively builds an optimized ensemble classifier. By combining
nature-inspired feature selection and ensemble learning, EODE
significantly improves the model’s identification capability.

We conducted experiments on 35 datasets encompassing var-
ious cancer types, and the results demonstrate the effectiveness
of our algorithm compared to four nature-inspired ensemble
methods (PSOEL, EAEL, FESM, and GA-Bagging-SVM), six
benchmark machine learning algorithms (KNN, DT, ANN,
SVM, DISCR, and NB), six state-of-the-art ensemble algorithms
(RF, ADABOOST, RUSBOOST, SUBSPACE, TOTALBOOST,
and LPBOOST), and seven nature-inspired methods (ACO, CS,
DE, GA, GWO, PSO, and ABC). Our algorithm outperformed
these methods in terms of classification accuracy.

In future work, we aim to enhance the efficiency of the
algorithm by improving the screening of redundant and invalid
features. Additionally, as biomedical data often exhibit class
imbalance, we plan to ensure robust results on class-imbalanced
data. Beyond computational refinements, we intend to evalu-
ate the proposed methodology on expanded gene expression
datasets from diverse clinical cohorts. As cancer subtyping
using gene expression data holds great promise for guiding
individualized treatment decisions, we hope to transition this
computational pipeline into real-world clinical settings.
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