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Abstract—The discovery of biomarker genes from gene ex-
pression data is a hot topic for understanding the mechanisms
underlying disease etiology. However, while the collection of high-
dimensional gene expression data has been made possible by
the adoption of technologies such as DNA microarray, it also
poses challenges for the identification of key disease-causing genes
due to its high-dimensional nature. To address this problem,
we propose a feature weighting particle swarm optimization
method (FWPSO) for efficiently identifying biomarker genes
from high-dimensional microarray data. Specifically, there are
two significant phases in FWPSO: 1) Feature Weighting Phase:
Features will be discriminated into relevant and irrelevant based
on the evolutionary performance of individuals in the PSO
population in each generation, and features will be assigned
weights based on this. 2) Feature Selection Phase: By focusing
the search on a feature set that have been determined to be
relevant based on the results of the previous phase, the PSO
population will improve the efficiency of removing redundant
features and discovering the most related genes. Both phases work
together and operate in synergy to achieve the optimized results.
The experimental results on four microarray datasets shows that
FWPSO not only reduces the number of feature dimensions to
a large extent, but also achieves higher classification accuracy
compared to other methods, demonstrating the effectiveness of
our method. Our implementation of FWPSO is available at
https://github.com/wangxb96/FWPSO.

Index Terms—Feature Selection; Feature Weighting; Particle
Swarm Optimization; Microarray; Classification

I. INTRODUCTION

Thanks to the development of microarray technology, the
collection of large-scale gene expression data has become
a reality. Especially for research, the study of microarray
data is crucial for the identification of biomarkers and the
analysis of key gene functions [1], thus attracting many
researchers into this field [2]. In recent years, the use of
artificial intelligence methods to assist microarray data research
has become a valuable supplement [3] [4]. However, due to the
high dimensionality of microarray data, it is easy for existing
AI models to fall into the ‘curse of dimensionality’, resulting
in high training costs and unpredictability of training results
[5]. Therefore, it is imperative to consider more focused and
efficient methods to reduce the effects of these problems.

* To whom correspondence should be addressed

Feature selection has proven to be one of the effective ways
to alleviate the ‘curse of dimensionality’ [6]. Generally, there
are three main categories of feature selection methods: filter,
wrapper and embedded. The filter method has the advantages of
generality and low complexity, and is suitable for pre-screening
features on large-scale data, however, it is often inferior to the
wrapper method in terms of classification performance [7]. The
wrapper method usually achieves near-optimal solutions with
good feature subset performance and, unfortunately, is usually
very computationally intensive as it trains a new model for each
chosen feature subset [6]. The embedded method treats feature
selection as part of the model construction, which performs
better than the filter method and has less time complexity than
the wrapper method. However, embedded methods rely on the
associated machine learning model and can be over-fitted [1].

Due to the high accuracy required for key gene identification,
many studies in recent years have used the wrapper method for
feature selection to identify biomarker genes. For example,
Sayed et. al. [8] proposed a nested genetic algorithm to
perform feature selection on high-dimensional microarray data.
Jain et. al. [9] presented a two-stage hybrid approach for
cancer classification, which combines correlation-based feature
selection with improved binary particle swarm optimization.
To address the shortcomings of the bacterial algorithm, Wang
et. al. [10] proposed a feature selection algorithm based on
bacterial colony optimization to improve the search capability
and validated it on 15 cancer microarray datasets. Apolloni et.
al. [11] designed two hybrid feature selection algorithms based
on binary differential evolution for high-dimensional microarray
data that were shown to reduce over 99% of the features. Lu
et. al. [12] combined mutual information maximization and
adaptive genetic algorithm to devise a hybrid feature selection
method, which can achieve better classification accuracy than
traditional methods.

Despite the positive results of the aforementioned studies
in their respective fields, subjecting the feature space to a full
domain calculation during the course of the evolutionary cycle
also increases the computational cost to an unmanageable level
at some stages (e.g. high dimensionality and large sample size).
At the same time, Jain et. al. [9] and Lu et. al. [12]’s study,
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Fig. 1. Schematic diagram of FWPSO. In the feature weighting phase,
individuals in the population search for the global optimum and are given
weights based on the importance of the features in the search space. Based
on the performance of the features in the feature weighting phase, the search
space is narrowed to improve the efficiency of the search for the optimal
position.

in which the filter method was used to pre-select features and
then the wrapper method was used to further select features,
also shows us a direction. Besides, according to Wang et. al.
[6]’s research, assigning weights to features during evolution
can also help us comprehend the significance of features.

Motivated by these observations, we propose a feature
weighting particle swarm optimization method called FWPSO
in this paper to deal with the challenges of high-dimensional
gene expression data to further search for biomarker genes.
Significantly, FWPSO uses two phases to assign weights to
features (Feature Weighting) and narrow the feature search
space (Feature Selection). In feature weighting phase, FWPSO
distinguishes the significance of relevant features based on
changes in performance caused by changes in individual
features within each generation. After that, we re-initialize
the PSO population in the feature selection phase based on
the assignment results of each feature in the feature weighting
phase, while narrowing the feature search space to achieve
efficient identification of biomarker genes. The two phases
work collaboratively to improve the FWPSO method’s search
ability to find key features.

The main contributions of the proposed method are as
follows:

• We propose a feature weighting particle swarm optimiza-
tion method named FWPSO, which consists of two phases,
feature weighting and feature selection, to identify the
importance of features and narrow the feature search space
to improve the search efficiency of biomarker genes.

• FWPSO assigns weights to corresponding features through
the evolutionary performance brought about by changes
in the selected features of individuals in each generation
of the PSO population.

• We demonstrate that the proposed FWPSO method sig-
nificantly outperforms the comparison methods on four
microarray datasets.

II. THE PROPOSED FWPSO METHOD

In this section, we introduce the proposed FWPSO model in
detail. Specifically, there are three main parts in our method:
particle swarm optimization initialization, feature weighting
phase and feature selection phase. The thoughts of the proposed
method is outlined in Fig. 1.

A. Particle Swarm Optimization Initialization

Particle swarm optimization (PSO) [13], a swarm intelligence
algorithm developed by J. Kennedy and R. C. Eberhart, has the
advantages of fewer parameters and fast convergence. Typically,
particles in the particle swarm optimization algorithm only have
two characteristics: velocity (V⃗ ) and position (X⃗), where V⃗
stands for the particle’s speed and X⃗ for its direction of motion.
During evolution, each particle looks for the best answer on
its own in the search space, saves it as the current individual
best value p⃗i,best, and then distributes the value to the other
particles in the entire particle swarm. All of the particles in
the swarm adjust their speed and position in accordance with
the current individual best value p⃗i,best they discover and the
current global optimal solution p⃗best,g shared by the entire
particle swarm. The individual best value that is determined
to be optimal is taken as the current global optimal solution
p⃗best,g for the entire particle swarm.

PSO Population Initialization: In the first phase, the PSO
population is initialized at random, where each domain of
each individual is represented as a real number. For each
individual p⃗i, it can be coded as p⃗i = {F1, F2, ..., Fdim},
where F denotes the feature search space and dim is the
size of F . To achieve binarization of the feature domain, we
use a threshold θ to transform the original feature domain.
Specifically, the transformation process is as follows:

Fn =

{
1, Fn ≥ θ

0, Fn < θ
(1)

As previously demonstrated, feature domains greater than
the threshold θ are chosen and marked with the number 1,
whereas feature domains that are not chosen are denoted with
the number 0.

PSO Population Updating: As the swarm evolves, individual
particles adjust their position and speed based on their inertia
(the degree to which they trust their prior movements), cognitive
state (their learned experience), and the exchange of information
about the socialization of optimal particle. The update steps
are as follows:

V⃗id = wV⃗id+c1r1( ⃗pid,best−X⃗id)+c2r2( ⃗pd,best,g−X⃗id) (2)

X⃗id = X⃗id + V⃗id (3)

where w is the inertia weight, c1 is the cognitive factor, c2
is the social factor, r1 and r2 are random numbers between
[0, 1], ⃗pid,best denotes the d-th dimension at ⃗pbest of the i-
th individual, and ⃗pd,best,g denotes the d-th dimension at the
global optimal individual p⃗best,g .
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Objective Function: In our study, we focus on discovering
the biomarker genes. During the training process, there are
two aspects to evaluate our algorithm, namely the classification
accuracy and the number of genes selected. Theoretically, fewer
genes chosen should result in a higher classification accuracy,
demonstrating the greater relevance of the genes chosen.
Consequently, we take both into account when designing the
objective function:

f = αError + β
fnum

|F |
(4)

where Error is the classification error rate, fnum is the
number of selected features, |F | is the size of feature space,
α and β are the control weights.

B. Feature Weighting Phase

Motivation: There are typically three basic categories of
features in high-dimensional data: relevant, irrelevant, and
redundant [7]. The evolutionary process of a particle swarm
optimization algorithm is one of continuous selection of
features. Therefore, our intuition is that the effectiveness of
features for this task can be evaluated by statistically measuring
the changes in classification performance caused by the selected
features. Specifically, to simplify the feature evaluation process,
we simply classify features into two groups in the feature
weighting phase: relevant and irrelevant.

How to identify relevant and irrelevant features? We
assess the relevance of features by the changes in performance
caused by changes in features over the evolutionary process.
Concretely, when individuals evolved better, we judged their
emerging features as relevant and their disappearing features
as irrelevant. Conversely, when individuals evolve worse,
we classify emerging features as irrelevant and disappearing
features as relevant.

How to assign weights to features? Overall, we create a
feature evaluation matrix W that has the same number of
dimensions as the feature space F to evaluate each feature Fi,
and all features are given zero weight at the beginning. Here,
we let the binary vector of individuals p⃗i in the population be
⃗pi,old before evolution and become ⃗pi,new after one generation

of evolution. Then the evolutionary changes can be described
as follows:

⃗change = ⃗pi,new − ⃗pi,old (5)

There are three situations in vector ⃗change: -1, 0 and 1,
where -1 means that the feature in the corresponding domain
is discarded, 0 means that the feature has not changed, and 1
means that the feature in the corresponding domain is newly
selected. Specifically, there are two scenarios to assess these
changed features: 1) The ⃗pi,new becomes better. In this case,
the weight value of emerging features is added by one, the
weight value of discarded features is subtracted by one, and no
operation is performed on features that have not changed. 2)
The ⃗pi,new becomes worse. In this situation, we treat discarded
features as relevant and increase their weight value by one,

while we treat emerging features as irrelevant and decrease
their weight value by one. Features that have not changed
remain unchanged in their weight values.

C. Feature Selection Phase

Feature Ranking: The feature ranking is based on historical
statistics from the feature weighting phase. Weights for features
are assigned during the prior training phase based on how well
the newly changed features are performed. After the initial
training phase, we ordered all features from most important to
least important based on the weight values assigned to each
feature in the weight matrix W .

Feature Screening: In general, three forms of weight values
are obtained: less than 0, equal to 0 and greater than 0. At
the same time, two categories of features—invalid features
and redundant features—need to be weeded out. In this study,
all features with weight values less than or equal to 0 are
determined to be irrelevant. Therefore, we discard these features
and update the feature space F :

F = F − Fi, ∀Fi ∈ F,W (Fi) ≤ 0 (6)

where W (Fi) is the weight values of feature Fi.
At this point, all the weights in the feature space have

values greater than 0. After that, we pre-screened out redundant
features by using the following criteria δ:

δ =

∑|F |
i=1 W (Fi)

|F |
(7)

At this step, features with performance below average are
regarded as redundant features. Then, we update the feature
space F by discarding the features with a weight value lower
than δ:

F = F − Fi, ∀Fi ∈ F,W (Fi) ≤ δ (8)

PSO Searching: After the above operation, we narrowed
down the feature search space F . In this phase, the best
individual from the previous phase will be retained to continue
participating in the search (individual p⃗1). We also reinitialize
the PSO population based on the feature ranking results
obtained in the previous phase. By sequentially choosing the
amount of features in accordance with the results of the feature
ranking, the individual in the PSO population is encoded until
all of the individuals are encoded. Specifically, p⃗2 selects
the highest-ranked feature. Following this example, eventually
⃗pNP selects the top NP -1 features. If the number of features

does not encode all individuals, the remaining individuals are
encoded randomly. Thereafter, the PSO population performs
search operations in a reduced feature space to improve the
efficiency of the search for biomarker genes.

D. Time Complexity Analysis

Since each dataset is classified via KNN, the time complexity
of our proposed FWPSO method is O(NP×(n×|F |+K×n)),
where NP is the size of PSO population, n is the number
of samples, |F | is the size of feature space, and K is the
parameter of KNN. Specifically, |F | is different in Feature
Weighting phase and Feature Selection phase.
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III. EXPERIMENTS

A. Datasets

We use four public datasets from [1], which are available at
https://github.com/xwdshiwo/MMBDE/tree/main/Datasets. In
these data, they all have equal or more than 2000 dimensions,
with the largest reaching 12600 dimensions. The details of
these datasets are shown in TABLE I.

Dataset # Samples # Features # Classes
Colon 62 2000 Tumor: 40, Normal: 22
Lymphoma 45 6937 ACL: 23, GCL: 22
Leukemia 72 7129 AML: 25, ALL: 47
Prostate 136 12600 Tumor: 59, Normal: 77

TABLE I
FOUR CANCER GENE EXPRESSION DATASETS; EACH DATASET SHOWING

THE NUMBER OF SAMPLES, FEATURES, AND CLASSES.

B. Experimental Setup

Our experiments are run on a laptop computer equipped
with an Intel(R) Core(TM) i5-6300HQ CPU @2.30GHz, 16GB
of RAM, and a 64-bit Windows 10 operating system using
Matlab 2021a. In this study, the running time is measured in
seconds. Following Xie et. al. [1]’s work, we set the size of the
population NP to 20, the maximum number of iterations Gmax

to 500, and use the average of five-fold cross-validation as
the classification accuracy. The classifier in this study is KNN
with K = 3. Meanwhile, as our method is a two-phase model,
we set these two phases with the same number of iterations.
The rest parameters of PSO [14] are listed in TABLE II.

Parameters Values Description
NP 20 Population size
Gmax 500 Number of iterations
lb 0 Lower bound
ub 1 Upper bound
θ 0.9 Threshold
c1 2 Cognitive factor
c2 2 Social factor
w 0.9 Inertial weight
Vmax (ub− lb)/2 Initial maximum velocity
α 0.01 Accuracy control weight
β 0.99 Feature size control weight
K 3 KNN’s parameter K

TABLE II
PARAMETERS OF THE PROPOSED FWPSO METHOD

C. Comparison with Related Methods from the Literature

TABLE III shows the detailed results of all methods, where
the best results are in bold. To ensure the stability of the results,
we repeated each experiment five times and then averaged the
results. From the results we can see that our FWPSO achieves
the best classification accuracy on all datasets compared to
other methods. In particular, FWPSO shows an improvement
of between 1% and 6.5% over the second ranked method. The
FWPSO method also has an advantage in the discovery of key
genes, with the smallest feature set obtained on half of the
data and very close to the best results of these methods on the
other datasets.

Dataset Methods Accuracy Genes

Colon

Gao [15] 0.9032 3
Sun [16] 0.8430 5
Lu [12] 0.8909 19
Wang [17] 0.8570 11.1
Lu [18] 0.8400 3
Vanitha [19] 0.7419 3
BDE [1] 0.9500 70
MMBDE [1] 0.9500 4
FWPSO (Ours) 0.9976 2.4

Leukemia

Aziz [20] 0.9868 12
Tumuluru [21] 0.9459 NAN
Sun [16] 0.9273 3
Lu [12] 0.9762 7
Wang [17] 0.961 8.1
Lu [18] 0.952 9
BDE [1] 0.9723 48
MMBDE [1] 0.9724 5
FWPSO (Ours) 0.9985 4.4

Lymphoma

Moradi [22] 0.8771 50
Vanitha [19] 0.9090 4
BDE [1] 0.9333 185
MMBDE [1] 0.9556 4
FWPSO (Ours) 0.9978 3.0

Prostate

Canedo [23] 0.9060 25
Jinthannasatian [24] 0.8743 5
Wu [25] 0.9044 NAN
Wang [17] 0.904 9
Lu [18] 0.916 4
BDE [1] 0.9314 89
MMBDE [1] 0.9124 4
FWPSO (Ours) 0.9978 5.6

TABLE III
COMPARISON OF FWPSO AND PUBLISHED METHODS

D. Ablation Study

In this section, we analyzed the effect of each component
of the FWPSO method. In particular, we discuss two cases,
pure PSO and FWPSO without feature weighting (FWPSO
without FW), in terms of classification accuracy, number of
genes selected and run time. TABLE IV tabulates the results for
all cases. As our FWPSO focuses on searching for key genes,
it can be seen that in the absence of the feature weighting
operation, it is far worse than pure PSO in terms of classification
accuracy, although its results are better than pure PSO in terms
of the number of genes obtained and the run time. At the same
time, we can also see that by adding the feature weighting
operation, the second phase of FWPSO searches through a more
relevant and smaller set of genes, achieving not only higher
classification accuracy, a smaller subset of features, but also
much less run time. In particular, the runtime decreases more
significantly with increasing dimensionality of the data features.
In the Prostate dataset, for example, with 12,600 features, the
FWPSO runtime is reduced by nearly 61% compared to pure
PSO. The above results all show the effectiveness and efficiency
of FWPSO in identifying key genes.

IV. CONCLUSION

In this paper, we proposed a two-phase feature weighting par-
ticle swarm optimization method FWPSO to identify biomarker
genes in microarray data. FWPSO starts with a feature
weighting operation in the first phase, where the importance
of the features that have changed during an evolution is
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Dataset Methods Accuracy Genes Run time

Colon
Pure PSO 0.9138 845.0 440.1
FWPSO without FW 0.6992 603.6 404.1
FWPSO 0.9976 2.4 428.8

Leukemia
Pure PSO 0.9893 2743.0 765.8
FWPSO without FW 0.6907 2224.4 694.7
FWPSO 0.9985 4.4 493.9

Lymphoma
Pure PSO 0.9511 1699.4 482.8
FWPSO without FW 0.6909 1248.2 439.7
FWPSO 0.9978 3.0 443.7

Prostate
Pure PSO 0.8997 5476.6 1545.4
FWPSO without FW 0.6850 3992.4 1317.8
FWPSO 0.9978 5.6 607.7

TABLE IV
ABLATION STUDY MEASURED BY ACCURACY, GENES AND RUN TIME

judged based on the change in individual performance, and the
cumulative result of all the evolutions in this phase is the final
weight of the corresponding feature. Based on the results of
the previous phase, FWPSO screens out features judged to be
irrelevant and redundant through feature screening to narrow
the solution search space and improve the identification of key
genes. Experiments with multiple methods on four microarray
data demonstrate the effectiveness of our proposed FWPSO
method in terms of classification accuracy and identification
of key genes.
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