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A B S T R A C T

Class-imbalanced biological datasets pose significant challenges in machine learning and data analysis tasks.
Prior methods to handle imbalance rely on data oversampling, which increases computational costs and
overfitting. While feature selection and ensemble learning are promising techniques, current applications
in imbalanced contexts are limited. To address these challenges, we present a novel framework called
Hybrid Sampling Nature-Inspired Optimization Ensemble (HSNOE) to enhance the identification of hidden
responders in imbalanced biological datasets. Our contributions are three-fold: 1) A hybrid undersampling and
oversampling technique to mitigate class-imbalance; 2) Integrate an ant colony optimization-based feature
selection that identifies informative feature subsets; 3) An ensemble classifier integrating diverse models
trained on optimized features to improve performance. The experiments conducted on the five biological
datasets demonstrate that HSNOE exhibits more stable comprehensive performance across six evaluation
metrics compared to ten benchmark methods. We also conducted a biological analysis specifically on the
Pan-cancer dataset. Moreover, the HSNOE method has been made publicly available on GitHub.1
1. Introduction

Class imbalance poses a pervasive challenge when applying machine
learning techniques to analyze biological datasets. In domains such
as cancer genomics and precision medicine, these datasets often con-
tain a minority of samples belonging to clinically important subtypes,
commonly referred to as ‘‘hidden responders’’. While recent work has
shown promise in identifying hidden responders (Li, Li, Wang, Zhang, &
Wong, 2021; Way et al., 2018), class imbalance remains a major barrier
to advancing precision oncology applications (Prasad, 2016). Biological
datasets typically exhibit highly skewed class distributions where rare
responding samples are vastly underrepresented compared to non-
responders. This class imbalance adversely affects the performance of
current machine learning algorithms, impeding the identification of
informative biomarkers and limiting prediction capabilities.

The imbalance bias is especially detrimental for biological tasks
where detecting small responding subgroups is critical. Oversampling
techniques that replicate minority samples are commonly used due to
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simplicity but prone to overfitting limited responding sample sizes (Rah-
man, Hassan, & Ahad, 2021). Models trained on replicated minorities
often fail to generalize. Meanwhile, undersampling risks eliminating
information providing insights into resistance or aiding biomarker
discovery (Rahman et al., 2021). This lost information represents
missed opportunities to characterize and predict differential responses.
Additionally, single models intrinsically favor majority performance
during training while lacking diversity to adequately model skewed
distributions (Brown, Wyatt, Harris, & Yao, 2005). They become dispro-
portionately biased towards dominant non-responding classes, obstruct-
ing detection of critical rare responders. Feature selection stability and
reproducibility also diminishes on imbalanced data as biomarker identi-
fication heavily relies on predominant samples, potentially overlooking
key features associated with minority response.

To overcome these limitations, ensemble approaches have emerged
as a promising paradigm for learning from class imbalanced biomed-
ical data (Gupta & Gupta, 2022; Rahman et al., 2021). Ensemble
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methods integrate multiple diverse base learners, leveraging their com-
plementary strengths to improve overall performance across skewed
distributions (Zhang & Ma, 2012). Advanced sampling techniques can
be incorporated to retain information from both majority and minority
samples. Hybrid oversampling and undersampling procedures prevent
overfitting while minimizing lost information. Diversified feature se-
lection stabilizes identification of biomarkers linked to rare treatment
response (Gao, Bian, Wang, Li, & Wang, 2022; Wang & Jia, 2022).
Optimized ensemble architectures can account for class imbalance dur-
ing training to enhance identification of critical responding subgroups
for precision oncology. In summary, specialized ensemble frameworks
customized for biological class imbalance hold strong potential for im-
proving detection of the most clinically valuable responding minorities
within heterogeneous tumors.

This paper proposes a hybrid sampling nature-inspired optimization
ensemble (HSNOE) framework. Specifically, we integrate various meth-
ods that address class-imbalanced learning problems, such as sampling,
feature selection, and ensemble learning, to improve the identifica-
tion performance. To prevent a situation where the model cannot
capture the characteristics of the class-imbalanced data, we use a
hybrid sampling method that combines the neighborhood cleaning
rule (NCL) (Laurikkala, 2001) and synthetic minority over-sampling
technique (SMOTE) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) to
balance the original data. After this, we synergize a nature-inspired ap-
proach with the ensemble method in a cooperative manner to optimize
the sample features and generate the diverse optimized ensemble. We
conducted extensive experiments on five biological datasets to evaluate
the performance of HSNOE compared to ten benchmark methods. The
results demonstrate that HSNOE is a highly competitive method in
handling class imbalance and outperforms the benchmark methods.
Furthermore, we present a detailed biological analysis of HSNOE,
specifically focusing on its application to a Pan-cancer dataset. This
analysis provides valuable insights into the effectiveness of HSNOE in
identifying hidden responders and uncovering related pathways within
the context of cancer research. By employing HSNOE, we not only
improve the identification of hidden responders, but also gain a deeper
understanding of the underlying biological mechanisms and pathways
associated with cancer.

The main contributions of the proposed HSNOE method can be
summarized as follows:

1. The proposed hybrid sampling technique combines NCL under-
sampling and SMOTE oversampling to balance biological data
and mitigate the impact of class imbalance.

2. The application of an evolutionary algorithm for nature-inspired
feature selection helps identify the most informative subset of
features from high-dimensional biological data. This approach
reduces model complexity, enhances interpretability.

3. The proposed ensemble framework integrates multiple diverse
classifiers trained on optimized feature sets to enhance predic-
tion performance. This contributes to improved performance in
detecting small hidden responder subgroups.

Overall, HSNOE provides a unique combination of techniques to
ddress the challenges of class imbalance, feature selection, and en-
emble learning in biological data analysis, with a focus on identifying
idden responders. Additionally, we have consolidated the main ab-
reviations used in this paper in Table 1. The remainder of this paper
s organized as follows: Section 2 provides a detailed description of
he proposed HSNOE method, including the hybrid sampling technique,
ature-inspired feature selection, and nature-inspired ensemble learn-
ng. Section 3 presents the datasets, baselines, evaluation metrics and
xperimental setup used to assess HSNOE’s performance. The obtained
esults and their comprehensive analysis are presented in Section 4,
ighlighting the superiority of HSNOE. We conduct a case study and
iological analysis on a Pan-cancer data in Section 5. In Section 6, we
2

iscuss the findings, including the limitations, and future directions p
Table 1
List of abbreviations.

Acronym Explanation

ACO Ant Colony Optimization
ANN Artificial Neural Network
AUROC Area Under the Receiver Operating Characteristic curve
AUPRC Area Under the Precision-Recall curve
DT Decision Tree
G-mean Geometric Mean
HSNOE Hybrid Sampling Nature-inspired Optimization Ensemble
KNN K-nearest Neighbor
ML Machine Learning
NB Naïve Bayes
NCL Neighborhood Cleaning Rule
PPI Protein-protein Interaction Network
RF Random Forest
SMOTE Synthetic Minority Over-sampling TEchnique
SVM Support Vector Machine
TCGA The Cancer Genome Atlas

of our approach. Finally, Section 7 summarizes the main contribu-
tions and emphasizes the significance of HSNOE in identifying hidden
responders.

2. Methods

2.1. Methodology overview of HSNOE

In this study, we propose a novel method called Hybrid Sampling
Nature-Inspired Optimization Ensemble (HSNOE) to tackle the chal-
lenges of class imbalance in biological data analysis. We evaluate
HSNOE on biological datasets denoted as 𝐷, which consist of 𝑛 samples.
Each sample 𝑑𝑖 is represented by a feature vector containing 𝑓 features,
along with an associated subtype label 𝑦. The HSNOE model consists
of three main components: hybrid sampling, nature-inspired feature
selection, and nature-inspired ensemble learning.

In the hybrid sampling phase, we initially split the original data 𝐷
nto a training set 𝐷1 and a test set 𝐷2 using a 9:1 ratio. To address
lass imbalance, we employ the neighborhood cleaning rule (NCL), a
ata cleaning technique, to eliminate noisy samples from the training
et 𝐷1. Additionally, we utilize the synthetic minority oversampling
echnique (SMOTE), an oversampling method, to augment the repre-
entation of minority class samples. The resulting dataset is denoted
s the training set 𝑋. Next, we introduce a nature-inspired feature
election method that combines ant colony optimization (ACO) with
rtificial neural networks (ANNs) to identify informative features from
he training set 𝑋. The ACO approach employs ANN as an evaluator
or the feature subset, optimizing the selection process. In the nature-
nspired ensemble learning phase, we construct a set of base classifiers
, consisting of K-nearest neighbor (KNN), decision tree (DT), discrimi-
ant analysis (DISCR), Naïve Bayes (NB), and artificial neural networks
ANN). To ensure diversity among the base classifiers, we employ a
iverse subspace generation method, which generates different sub-
paces. Subsequently, ACO is utilized to optimize the ensemble from
he base classifiers 𝐵, resulting in the creation of the final ensemble
odel 𝛹 .

Finally, we evaluate the performance of the test set 𝐷2 by employing
lurality voting based on the predictions of the ensemble model 𝛹 .
his approach combines the predictions of multiple base classifiers
o make a collective decision. The overall algorithm for HSNOE is
ummarized in Algorithm 1. The primary objectives of HSNOE are
o enhance classification performance in biological data analysis and
rovide insights into the underlying biological mechanisms. To achieve
hese goals, HSNOE implements a multi-step framework, as depicted
n Fig. 1. By integrating hybrid sampling, feature optimization, and
nsemble modeling, HSNOE aims to address current challenges in class-
mbalanced biological data analysis. The multi-pronged framework
trives to improve rare class identification, biomarker discovery, and

redictive capabilities on skewed real-world datasets.
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Fig. 1. The framework of the proposed HSNOE model. It consists of four main phases: In Phase 1, the original data is pre-processed through random splitting into training and test
sets at a ratio of 9:1. Oversampling and undersampling techniques are then applied to balance the classes. Phase 2 employs an ACO-based nature-inspired feature selection method
to identify optimal feature sets. Phase 3 trains multiple classification models on the selected feature subsets from the previous phase. An ACO-based nature-inspired ensemble
learning approach is utilized to select optimal model sets. Finally, in Phase 4, a plurality voting scheme fuses the predictions from the various models selected in Phase 3 to
determine the final class prediction.
2.2. Hybrid sampling

To address the issue of class imbalance in the dataset, we employed
the neighbor cleaning rule (NCL) along with the synthetic minority
oversampling technique (SMOTE) to clean and oversample the minority
class data. First, we divided the original data 𝐷 into a training set
𝐷1 and a test set 𝐷2 at a ratio of 9:1. Here, we use the training data
𝐷1 as an example to show our hybrid sampling process. Initially, the
dataset 𝐷1 is partitioned into two subsets 𝐺 and 𝑂, where 𝐺 contains
all samples belonging to the minority class, and the remaining samples
constitute 𝑂. The ENN rule (Wilson & Martinez, 2000) is applied to 𝑂
to identify and remove noisy samples, resulting in a new dataset 𝑋′

1.
Subsequently, SMOTE is applied to oversample the minority class data
by creating synthetic samples based on the K-nearest neighbors (K = 5)
of each sample in the minority class. The number of synthetic samples
generated for each minority class sample is determined by the sampling
multiplicity 𝑁 based on the imbalanced ratio.

Specifically, for each minority class sample 𝑥𝑖 in 𝑋′
1, its K-nearest

minority class neighbors are identified, and several samples are ran-
domly selected. For each selected sample 𝑥𝑗 , a new sample 𝑥𝑛𝑒𝑤 is
generated using the following formula:

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝑟𝑎𝑛𝑑(0, 1) ∗ (𝑥𝑗 − 𝑥𝑖). (1)

where 𝑟𝑎𝑛𝑑(0, 1) is a random number between 0 and 1. This process
results in an oversampled dataset 𝑋′

2. Despite applying NCL in the
hybrid sampling step, some low-quality samples may still exist in the
oversampled dataset. These samples can adversely affect classification
3

performance. Therefore, the NCL method is employed again on 𝑋′
2 to

remove noisy samples, resulting in the processed dataset 𝑋.
The NCL method followed by SMOTE is used in this study to address

class imbalance in the dataset and improve the performance of the
classification model. The authors carefully describe the data prepro-
cessing steps, which involves cleaning and oversampling the minority
class data to generate a balanced dataset. In particular, we utilized
the imbalanced-learn package (Lemaître, Nogueira, & Aridas, 2017) to
generate Fig. 2 as an example, where the initial sample size was 80
and the class imbalance ratio was 9:1. We found that after using NCL,
the number of noisy samples decreased. With the use of SMOTE, the
number of minority class samples increased, thereby alleviating the
class imbalance situation.

2.3. Nature-inspired feature selection

The training data is denoted as 𝑋 = {(𝑥1, 𝑦1),… , (𝑥𝑛′ , 𝑦𝑛′ )}, where
𝑥𝑖 = (𝑥𝑖,1, 𝑥𝑖,2,… , 𝑥𝑖,𝑓 ) represents the feature vector with 𝑓 denoting
the number of features. The label 𝑦 belongs to the set {1, 2,… , 𝑐},
where 𝑐 represents the different subtypes. However, biological data
often contain only a few highly related features, necessitating the use
of feature selection methods for further analysis (Qu et al., 2021). In
this study, we propose the incorporation of ant colony optimization
(ACO) with artificial neural networks (ANN) for feature selection. The
feature selection process consists of three critical components: popula-
tion initialization, ACO search, and the objective function (see Fig. 3).
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Fig. 2. An example of 80 samples with an imbalanced ratio of 9:1 was used on our hybrid sampling. This involved using neighborhood cleaning rule (NCL) to reduce noisy
samples and SMOTE to increase the number of minority class samples, effectively alleviating the class imbalance situation.
Fig. 3. The schematic diagram of ant colony optimization (ACO). It visually represents
the iterative process where artificial ants construct solutions by probabilistically
selecting edges based on pheromone trails and heuristic information, while updating
the trails according to solution quality, ultimately guiding the search towards optimal
solutions.

2.3.1. Population initialization
An ACO population 𝑃𝑜𝑝with |𝑃𝑜𝑝| individuals 𝑃 = {𝑝1, 𝑝2,… , 𝑝|𝑃𝑜𝑝|}

is first initialized randomly with real numbers. For an individual 𝑝𝑘, it
can be depicted as follows:

𝑝𝑘 = {𝑔1, 𝑔2,… , 𝑔𝑓 }, (2)

where 𝑔𝑓 denotes the 𝑓𝑡ℎ feature and 𝑓 is the number of features. In
general, the 𝑘th ant travels from feature 𝑖 to feature 𝑗 in a stochastic
manner with the probability shown below:

𝑝𝑘𝑖𝑗 =

⎧

⎪

⎨

⎪

(𝜏𝛼𝑖𝑗 )(𝜂
𝛽
𝑖𝑗 )

∑

𝑙∈𝐽𝑘𝑖
(𝜏𝛼𝑖𝑙 (𝜂

𝛽
𝑖𝑙 ))
, 𝑖𝑓 𝑗 ∈ 𝐽𝑘𝑖 (3)
4

⎩

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
where 𝜏𝑖𝑗 denotes the amount of virtual pheromone for transition from
state 𝑖 to 𝑗, 𝜂𝑖𝑗 denotes the heuristic desirability of its state transition
at feature 𝑖 to feature 𝑗, 𝛼 > 0 and 𝛽 > 0 are two parameters
that control the influence of 𝜏𝑖𝑗 and 𝜂𝑖𝑗 , respectively, 𝐽𝑘𝑖 denotes the
neighbor features of feature 𝑖 that allowed a visit by the ant 𝑘.

2.3.2. ACO search
The ACO population then searches for the optimal feature sub-

sets in the feature space by pheromone updates. In each generation,
the best individual is saved after the ACO search. Specifically, the
pheromone updating rule is shown in the following equations (Aghdam,
Ghasem-Aghaee, & Basiri, 2009):

𝜏𝑖𝑗 ←←← (1 − 𝜌)𝜏𝑖𝑗 +
𝑚
∑

𝑘=1
𝛥𝜏𝑘𝑖𝑗 + 𝛥𝜏

𝑔
𝑖𝑗 (4)

𝛥𝜏𝑘𝑖𝑗 =

{

𝜙 ⋅ 𝛾(𝑆𝑘) + (1−𝜙)⋅(𝑛−|𝑆𝑘|)
𝑛 , 𝑖𝑓 𝑖 ∈ 𝑆𝑘,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5)

where 𝜌 denotes the pheromone evaporation coefficient, 𝑚 denotes the
number of ants, 𝑆𝑘 denotes the feature subset found by ant 𝑘, 𝛾(𝑆𝑘)
denotes the measure of the classifier performance, and |𝑆𝑘| denotes the
size of 𝑆𝑘, 𝜙 ∈ [0, 1] is the parameter that controls the relative weight.

2.3.3. Feature selection objective function
While classification accuracy has traditionally been the primary

focus of model evaluation, the ability to discover meaningful predic-
tive features is equally important. Biological datasets often present in
high dimensions with ubiquitous redundant or irrelevant attributes. To
address this, we optimize a multi-objective function that considers both
predictive power and parsimony of the selected feature set.

Specifically, our objective aims to minimize two goals: maximiz-
ing classification performance via metrics like area under the ROC
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Algorithm 1 HSNOE Algorithm
Input: Original Data: 𝐷 = {(𝑑1, 𝑦1), ..., (𝑑𝑛, 𝑦𝑛)} 𝑑 ∈ 𝑅𝑑 , 𝑦 ∈ {1, 2, ..., 𝑐},

set of base classifiers 𝐵, upper bounds of cluster 𝐾, population of
CO (Pop), evaluation times 𝑇 , the feature selection function 𝑓1, and

he classifier optimization function 𝑓2
utput: The selected features 𝐹 ′ and the evaluation
erformance
1: 𝐷1, 𝐷2 ←←← Partition original data 𝐷 into training and test sets at a

9:1 ratio
2: 𝑋 ←←← Using hybrid sampling to process 𝐷1
3: Initialize a population of |Pop| individuals
4: while (𝑡 <= 𝑇 ) do
5: Pop ←←← 𝑓1(Pop)
6: 𝑝←←← best individual in Pop
7: Update 𝑡;
8: end while
9: 𝐹 ′ ←←← informative features from 𝑝
0: 𝑋 ←←← 𝑋(𝐹 ′)
1: 𝐷2 ←←← 𝐷2(𝐹 ′)
2: 𝑋 = 𝑋1 ∪ ... ∪𝑋5, 𝑋𝑖 ∩𝑋𝑗 = ∅(𝑖 ≠ 𝑗)
3: for each 𝑋𝑖 in 𝑋 do
4: 𝑋−𝑖 = 𝑋 −𝑋𝑖
5: for 𝑘 = 1 ←←→ 𝐾 do
6: 𝐶𝑆 ←←← partition 𝑋−𝑖 into 𝑘 clusters
7: 𝑆 = 𝑆 + 1
8: 𝐶𝑆 ←←← balance clusters 𝐶𝑆
9: end for
0: 𝐶𝑃 ←←← Train classifiers on 𝐶𝑆 by 𝐵
1: for each 𝑐𝑝𝑖 in 𝐶𝑃 do
2: AUROC(i) ←←← calculate each 𝑐𝑝𝑖’s AUROC of 𝑋𝑖
3: end for
4: 𝐶𝑃 ←←← (𝑐𝑝𝑖 if AUROC(𝑐𝑝𝑖) > mean(AUROC))
5: Initialize a population of |Pop| individuals
6: while (𝑡 <= 𝑇 ) do
7: Pop ←←← 𝑓2(Pop)
8: 𝑝 ←←← best individual in Pop
9: Update 𝑡;
0: end while
1: 𝜓 ←←← select classifiers in 𝐶𝑃 from 𝑝
2: Optimized model 𝛹 ←←← 𝜓
3: end for
4: Evaluation performance←←← classify samples of 𝐷2 by 𝛹
5: Return Informative features 𝐹 ′, evaluation performance

curve, while simultaneously minimizing the number of retained fea-
tures. This balanced approach guides the algorithm to identify the
most informative features, yielding a optimized representation of the
underlying biological signal. By coupling predictive ability with di-
mensionality reduction, our framework is designed not only to achieve
robust classification, but also to provide contextually relevant feature
selection. Intuitively, the subset of features most strongly linked to
targets of interest are preferentially preserved. Therefore, the proposed
multi-factorial objective encourages discovery of the most determining
attributes for downstream biological insights and therapeutic devel-
opment. Specifically, the objective function 𝑓1 is depicted as follows:

𝑓1 = 𝜁 ∗ 𝜎 + (1 − 𝜁 ) ∗
𝑓𝑛𝑢𝑚
𝑓

, (6)

here 𝜁 is the parameter that controls the importance of two goals, 𝜎
enotes the area above the ROC curve (1 - AUROC), 𝑓 is the number
f features and 𝑓𝑛𝑢𝑚 denotes the number of selected features in the
volution.
5

𝜓

.4. Nature-inspired diverse ensemble learning

In this section, a nature-inspired diverse ensemble learning method
s proposed to enhance the identification ability of the HSNOE and in-
ludes three important components: diverse classifier pool generation,
lassifier pool optimization, and ensemble prediction.

.4.1. Diverse classifier pool generation
In the training phase, we use fivefold cross-validation to evaluate

he performance. Specifically, the training set 𝑋 can be depicted as
= 𝑋1∪⋯∪𝑋5, 𝑋𝑖∩𝑋𝑗 = ∅(𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ [1, 5]). For each input biological

ata 𝑋𝑖 = {(𝑥1, 𝑦1),… , (𝑥𝑚, 𝑦𝑚)}, where 𝑦 ∈ {1, 2,… , 𝑐}, 𝑐 is the class
of data and 𝑚 is the number of input samples. K-means (MacKay &
Mac Kay, 2003) is utilized to perform stepwise clustering of data 𝑋𝑖,
with the parameter 𝑘 increasing from 1 to 𝑡. 𝑡 denotes the number of
classes in data 𝑋𝑖. Specifically, in each K-means clustering, the clusters
are obtained by minimizing the following function:

𝑎𝑟𝑔𝑚𝑖𝑛
𝑆

𝑘
∑

𝑖=1

∑

𝑣∈𝑆𝑖

‖𝑣 − 𝜇𝑖‖2, (7)

where 𝑣 denotes the feature vector and 𝜇𝑖 denotes the centroid of
cluster 𝑆𝑖. After that, a random subspace containing all the clusters is
generated. However, these data clusters in the subspace are class pure.
Therefore, it is necessary to balance the clusters to achieve an unbiased
result.

Assuming there are 𝑠 clusters in the subspace, the relation between
these clusters can be depicted as 𝐶1 ∩𝐶2 ∩ ...∩𝐶𝑠 = ∅ and 𝐶1 ∪𝐶2 ∪⋯∪
𝑠 = 𝑋𝑖. Here, each cluster represents a unique class. Then, we balance

he cluster by adding samples from the other classes. Specifically, if
𝑖 has 𝑙 samples and centroid 𝑐𝑖, we first calculate the normalized
uclidean distance from the samples of each other class to the centroid
𝑖 of 𝐶 𝑖 and then add the 𝑙 nearest samples from each class to the cluster
𝑖. The same operation is repeated until all clusters in the subspace are
alanced.

Then, five structurally different classifiers, including K-nearest neigh
or (KNN), decision tree (DT), discriminant analysis (DISCR), naïve
ayes (NB), and artificial neural networks (ANN), are trained by these
lusters in the subspace. After that, all trained classifiers are placed
nto the classifier pool, 𝐶𝑃 . Furthermore, a nature-inspired classifier
ool optimization method is proposed to optimize the classifier pool
𝑃 .

.4.2. Classifier pool optimization
In the classifier pool optimization phase, we preoptimize the classi-

ier pool. Specifically, those classifiers with below-average performance
re removed from the classifier pool 𝐶𝑃 . Then, an ACO-based nature-
nspired method is employed to optimize the preoptimized classifier
ool. In detail, an ACO population is first initialized, and each indi-
idual in the population can be denoted as 𝑝 = {𝑐𝑝1, 𝑐𝑝2,… , 𝑐𝑝𝑟}. Here,
𝑝𝑟 denotes the classifier in 𝐶𝑃 , and 𝑟 is the number of classifiers in
𝑃 . After that, the ACO population starts searching for the optimal

olution. Specifically, the ant colony search and pheromone update
pproach follows the steps in nature-inspired feature selection. For the
bjective function 𝑓2, two goals are maintained to achieve optimization
nd balance, which can be depicted as follows:

2 = 𝜁 ∗ 𝜎 + (1 − 𝜁 ) ∗
|𝜓|
𝑟
, (8)

where 𝜁 is the same setting as in the nature-inspired feature selection to
control the importance of the two goals, 𝜎 denotes the area above the
ROC curve (1 - AUROC), |𝜓| denotes the number of selected classifiers

and 𝑟 is the number of classifiers in 𝐶𝑃 .
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2.4.3. Ensemble prediction
Ensemble techniques that aggregate predictions from multiple mod-

els are widely used to boost performance. Plurality voting is a simple
yet powerful fusion approach wherein the class receiving the most votes
across the ensemble is selected as the overall prediction. In our method,
we first employ this process to construct a meta-learner (𝛹 ) during
training. Specifically, classifiers (𝜓) in the candidate pool are evaluated
n validation data, after which the top performers are retained to
ompose 𝛹 . At testing, 𝛹 is directly applied to new samples. Each
onstituent classifier independently generates predictions, which are
hen combined using plurality voting. This vote-based fusion has key
dvantages. First, classification errors from individual models tend to
ancel out, resulting in a more robust collective decision. Additionally,

can be deployed as a single optimized unit for inference, avoiding
etraining costs.

.5. Time complexity analysis

In this section, we will analyze the time complexity of the proposed
lgorithm, considering three main parts: hybrid sampling, nature-
nspired feature selection, and nature-inspired ensemble learning. The
etailed analysis is as follows:

1. Hybrid Sampling:

• NCL costs 𝑂(𝑛2), where 𝑛 is the number of samples in the
training dataset.

• SMOTE costs 𝑂(𝑛 log 𝑛), where 𝑛 is the number of samples.

2. Feature Selection:

• The time complexity of feature selection is 𝑂(𝑁 × 𝑛 × 𝑇 ),
where𝑁 is the size of the population in the ACO algorithm,
𝑛 is the number of samples in the training dataset, and 𝑇
is the number of iterations.

3. Ensemble Learning:

• K-means clustering has a time complexity of 𝑂(𝐾 × 𝑛 × 𝐼),
where 𝐾 is the number of clusters, 𝑛 is the number of
input samples, and 𝐼 is the number of iterations needed
for convergence.

• The number of clusters increases from 1 to 𝑡. Thus, a total
of 𝑡 × (𝑡 + 1)∕2 clusters are generated. Therefore, the time
complexity for clustering is 𝑂((𝑡 × (𝑡 + 1)∕2) × 𝑛 × 𝐼).

• The cluster balancing stage costs 𝑂(𝑙 × 𝑣), where 𝑙 is the
number of samples in the original cluster, and 𝑣 is the
number of total classes after cluster balancing.

• The balanced clusters are then trained by the base clas-
sifiers in 𝐵. The time complexity for training the base
classifiers is 𝑂((𝑡×(𝑡+1)∕2)×𝑛2) in the worst-case scenario.

• For optimization, the pre-optimization step costs 𝑂(𝑛), and
the nature-inspired classifier optimization costs 𝑂(𝑁 × 𝑛 ×
𝑇 ), where 𝑁 is the population size, 𝑛 is the number of input
samples, and 𝑇 is the number of iteration times.

n summary, the total time complexity can be analyzed as follows:
(𝑛2) + 𝑂(𝑛 log 𝑛) + 𝑂(𝑁 × 𝑛 × 𝑇 ) + 𝑂((𝑡 × (𝑡 + 1)∕2) × 𝑛 × 𝐼) + 𝑂(𝑙 ×
) + 𝑂((𝑡 × (𝑡 + 1)∕2) × 𝑛2) + 𝑂(𝑁 × 𝑛 × 𝑇 ) = 𝑂(𝑛3).

. Implementation

.1. Data collection

In this study, we conducted experiments using five class-imbalanced
iological datasets with imbalanced ratios ranging from 8.6 to 28. The
coli, sick_euthyroid, yeast_ml8, arrhythmia, and yeast_me2 datasets
6

Table 2
Five imbalanced biological datasets used in the study.

Dataset Samples Features IR

ecoli 336 7 8.6
sick_euthyroid 3,163 42 9.8
yeast_ml8 2,417 103 13
arrhythmia 452 278 17
yeast_me2 1,484 8 28

were sourced from Ref. Ding (2011). Detailed information about each
dataset can be found in Table 2.

Moreover, we also used a cancer gene expression dataset called
Pan-cancer (Li et al., 2021) for further evaluation. The Pan-cancer
gene expression profiles were sourced from The Cancer Genome Atlas
(TCGA) PanCanAtlas project. This large-scale effort integrated multi-
center mutation calls, Illumina RNAseq data, and GISTIC2.0 copy num-
ber thresholds across 16 prevalent cancer types, totaling 4759 patient
samples assayed for 20,486 genetic features. To discern significantly
cancer-associated genes, the binary label 𝑦 was designated as 1 if a gene
exhibited strong associations with mutations according to integrative
analyses, or 0 otherwise.

3.2. Metrics

In this study, six metrics including accuracy, AUROC (Area Under
the Receiver Operating Characteristic curve), AUPRC (Area Under the
Precision-Recall curve), F1-score, G-mean and their average were used
to evaluate the performance of the algorithm on imbalanced datasets.

Accuracy : The proportion of correct predictions made by the model
over the total number of predictions made.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(9)

where TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives, and FN is the number of
false negatives.

AUROC: It measures the ability of the model to distinguish be-
tween positive and negative samples and is commonly used in binary
classification problems. The area under the ROC curve (AUROC) is
obtained from the correlation between the true-positive rate (TPR) and
false-positive rate (FPR) as follows:

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(10)

𝑃𝑅 = 𝐹𝑃
𝑇𝑁 + 𝐹𝑃

, (11)

AUPRC: It measures the trade-off between precision and recall and
is useful in situations where the dataset is highly imbalanced. The
area under the Precision-Recall curve (AUPRC) is obtained from the
precision against the recall as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(12)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (13)

F1-score: It is a commonly used metric that balances both precision
and recall, and is useful in imbalanced datasets, which can be defined
as follows:

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(14)

G-mean: It is a metric that takes into account both the true positive
rate and the true negative rate and is useful in situations where the
dataset is highly imbalanced.

𝐺-𝑚𝑒𝑎𝑛 =
√

𝑇𝑃𝑅 ∗ 𝑇𝑁𝑅 (15)

𝑇𝑁𝑅 = 𝑇𝑁 (16)

𝑇𝑁 + 𝐹𝑃
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where TNR is the true negative rate (specificity).
Average: Mathematically, the average is calculated as the sum of all

the individual metric values divided by the total number of metrics. In
the context of the study, the average can be defined as:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦+𝐴𝑈𝑅𝑂𝐶 +𝐴𝑈𝑃𝑅𝐶 +𝐹1-𝑠𝑐𝑜𝑟𝑒+𝐺-𝑚𝑒𝑎𝑛)∕5 (17)

These metrics are important in evaluating the performance of al-
orithms on imbalanced datasets, where the classes are not equally
epresented. By using a combination of these metrics, we can obtain
more comprehensive assessment of the algorithm’s performance and

ts ability to accurately identify and classify cancer samples.

.3. Baselines

In our experiments, we employed ten baseline methods to evaluate
he performance of our proposed approach. These methods are widely
sed in the field of machine learning and have been extensively studied
n various applications.

The first set of baseline methods includes K-nearest Neighbor (KNN),
upport Vector Machine (SVM), Decision Tree (DT), Naïve Bayes (NB),
nd Random Forest (RF). KNN is a non-parametric algorithm that classi-
ies instances based on their proximity to neighboring instances. SVM,
n the other hand, is a supervised learning algorithm that constructs
yperplanes to separate different classes in a high-dimensional space.
T is a hierarchical model that recursively partitions the feature space
ased on decision rules. NB is a probabilistic classifier that assumes
ndependence among features. RF is an ensemble learning method that
ombines multiple decision trees to make predictions.

The second set of baseline methods comprises Multi-class Support
ector Machine (MSVM), Ensemble Tree (ET), Artificial neural net-
ork (ANN), Generalized Regression Neural Network (GRNN), and
robabilistic Neural Network (PNN). MSVM is an extension of SVM
esigned for multi-class classification problems. ET is an ensemble
ethod that combines predictions from multiple decision trees. ANN

s a computational model inspired by the structure and function of
iological neural networks, capable of learning complex relationships
etween inputs and outputs. GRNN is a type of neural network that
ses radial basis functions for regression tasks. PNN is a feedforward
eural network with a specific architecture that captures the probability
istribution of the training data.

These baseline methods provide a comprehensive comparison frame-
ork for evaluating the effectiveness and efficiency of our proposed
pproach in handling the class-imbalanced biological datasets. By lever-
ging the strengths and characteristics of these methods, we can assess
he performance of our approach and gain insights into its strengths
nd limitations in comparison to established techniques.

.4. Parameter settings

A rigorous 5-fold cross-validation strategy was implemented for
ll model training and optimization procedures in this study. The
ase classifiers in HSNOE were configured with specific parameters as
ollows: KNN utilized 5 neighbors, Discriminant analysis employed the
iagonal linear function, Naïve Bayes adopted a kernel distribution.
he remaining parameters were kept at their default settings. Both
he nature-inspired feature selection and ensemble construction stages
n HSNOE utilized the same configuration for the ACO algorithm. A
opulation size of 100 individuals was evolved over 50 iterations. The
election threshold was set at 0.5. The balance coefficient (𝜁) governing
he multi-objective ACO optimization was maintained at 0.9 for both
tages. To enhance the stability of the results, each experiment was
ndependently repeated 10 times, and the average performance was
eported as the final outcome. This repetition helps mitigate the impact
f random variations and provides a more reliable evaluation of the
lgorithm’s performance.
7

Table 3
Performance comparison of classification algorithms on ecoli dataset.

Methods Accuracy AUPRC AUROC F1-score G-mean Average

KNN 0.9244 0.5000 0.7634 0.9582 0.9582 0.8208
NB 0.8958 0.5000 0.5000 0.9451 0.9465 0.7575
MSVM 0.9244 0.5000 0.7634 0.9582 0.9582 0.8208
SVM 0.8952 0.5000 0.5249 0.9444 0.9455 0.7620
DT 0.9113 0.5000 0.7359 0.9508 0.9509 0.8098
RF 0.9298 0.5000 0.7437 0.9615 0.9616 0.8193
ET 0.9345 0.5000 0.7665 0.9640 0.9641 0.8258
GRNN 0.9091 0.9091 0.5000 – 0.0000 0.5795
ANN 0.9545 0.9744 0.8625 0.7476 0.8513 0.8781
PNN 0.9394 0.9815 0.8917 0.7208 0.8835 0.8834
HSNOE 0.9932 0.9901 0.9797 0.9846 0.9900 0.9875

4. Results and analysis

Table 3 compares the performance of 11 different classification
algorithms (KNN, NB, MSVM, SVM, DT, RF, ET, GRNN, ANN, PNN,
HSNOE) on the ecoli dataset based on 6 evaluation metrics — Accuracy,
AUROC, AUPRC, F1-score, G-mean and their Average. We can see that
the traditional algorithms like KNN, NB, MSVM and SVM perform rea-
sonably well with accuracy around 0.9 but have lower scores on other
metrics. Decision tree based algorithms like DT, RF and ET improve
the average score to around 0.8 but their AUROC/AUPRC is only 0.5.
Neural network models ANN and PNN achieve good scores overall
(>0.85) indicating their stronger representational ability compared to
other algorithms. The proposed HSNOE methodology outperforms all
other algorithms significantly across all evaluation metrics. It achieves
near perfect scores of >0.99 for Accuracy, AUROC, AUPRC and F1
while the second best scores are 0.95–0.98. This clearly demonstrates
the effectiveness of HSNOE in handling class imbalance present in the
ecoli dataset through its hybrid approach of sampling, feature selection
and ensemble modeling. The results validate that it can improve rare
class identification and provide more robust and balanced classification
compared to other state-of-the-art algorithms.

Fig. 4 presents a performance comparison of various classification
algorithms on the sick_euthyroid dataset. From the figure we can see
that traditional algorithms such as KNN, NB, MSVM, and SVM achieve
relatively high F1 and G-mean scores of around 0.95. However, their
performance on other metrics, such as AUROC and AUPRC, is lacklus-
ter. These algorithms may struggle to handle the class imbalance in the
dataset, leading to suboptimal results. Decision tree-based algorithms,
namely DT, RF, and ET, stand out in terms of performance. Among
them, RF achieves the highest average score of 0.8734 and the best
AUROC of 0.9180. These results indicate that decision tree algorithms
are robust and perform well even in the presence of class imbalance in
the sick_euthyroid dataset. Neural network models, including GRNN,
ANN, and PNN, obtain high AUPRC scores (>0.9), suggesting their
potential to capture complex patterns in the data. However, their
performance on other metrics is mediocre and highly variable, indicat-
ing a tendency towards overfitting. Further tuning and regularization
techniques may be needed to improve the generalization ability of these
models. The proposed HSNOE algorithm achieves competitive scores,
outperforming neural network models in most metrics. However, it
does not surpass the top-performing tree algorithms. This observation
may be attributed to the sick_euthyroid dataset exhibiting less severe
class imbalance compared to other datasets where HSNOE excelled.
Nonetheless, HSNOE demonstrates balanced performance, validating its
flexibility and effectiveness in handling imbalanced datasets.

Fig. 5 compares 11 algorithms on the yeast_ml8 imbalanced dataset
involving subcellular location prediction. Traditional algorithms KNN
and SVM-based models achieve good balanced accuracy (>0.92), in-
icating applicability to such classification problems. However, NB
nderperforms due to intrinsic assumptions, highlighting importance of
odel selection. Decision trees show decent performance but are sur-
assed by kernel methods, demonstrating potential limitations. Neural
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Fig. 4. Performance comparison of KNN, NB, MSVM, SVM, DT, RF, ET, GRNN, ANN, PNN, and HSNOE on the sick_euthyroid dataset based on metrics including Accuracy, AUROC,
AUPRC, F1-score, G-mean, and their Average. In the heatmap, the redder the color, the better the performance, while the greener the color, the poorer the performance.
Fig. 5. Performance comparison of KNN, NB, MSVM, SVM, DT, RF, ET, GRNN, ANN, PNN, and HSNOE on the yeast_ml8 dataset based on metrics including Accuracy, AUROC,
AUPRC, F1-score, G-mean, and their Average. In the bar plot, the taller the bar, the better the corresponding performance.
models ANN and PNN report highest AUPRCs (>0.93) but very poor F1-
scores, suggesting overfitting tendencies without proper regularization.
The proposed HSNOE exhibits the best overall average score (0.8302)
and AUROC (0.7106), outperforming all baselines on this challenging
real-world dataset through its ability to balance learning and mitigate
overfitting risk. Key findings include suitability of kernel techniques,
need for regularization in neural models, and effectiveness of HSNOE’s
multistage framework in improving rare class recognition. Rigorous
algorithm benchmarking provides valuable empirical guidance on cur-
rent best practices for biological data imbalance issues. The superior
performance of HSNOE underscores its effectiveness.

Table 4 compares algorithms on the arrhythmia data, contain-
ing imbalanced cardiac abnormality classes. Traditional algorithms
KNN, NB, and SVM-based models achieve good balanced accuracy
8

(>0.94), highlighting applicability for biomedical datasets. Decision
trees outperform, with DT attaining the highest average score of
0.8480, signaling robustness against class imbalance. Neural networks
GRNN and ANN report strong AUPRCs but lackluster other metrics,
implying overfitting on this complex task. PNN severely overfits. The
proposed HSNOE framework remarkably achieves a perfect score of
100% across all metrics, significantly outperforming all baselines. This
underscores HSNOE’s strength in addressing class imbalance through
its unified sampling-optimization-ensemble approach, wherein diverse
models compensate for each other’s weaknesses. Key findings include
suitability of decision trees, need for regularization in neural models,
and superior effectiveness of HSNOE’s multi-faceted framework in
maximizing rare class identification.
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Fig. 6. Performance comparison of KNN, NB, MSVM, SVM, DT, RF, ET, GRNN, ANN, PNN, and HSNOE on the yeast_me2 dataset based on metrics including Accuracy, AUROC,
AUPRC, F1-score, G-mean, and their Average. In the bar plot, the taller the bar, the better the corresponding performance.
o-
Table 4
Performance comparison of classification algorithms on arrhythmia dataset.

Methods Accuracy AUPRC AUROC F1-score G-mean Average

KNN 0.9425 0.5000 0.4988 0.9704 0.9707 0.7765
NB 0.9447 0.5000 0.5000 0.9716 0.9720 0.7777
MSVM 0.9447 0.5000 0.5000 0.9716 0.9720 0.7776
SVM 0.9447 0.5000 0.5000 0.9716 0.9720 0.7776
DT 0.9664 0.5000 0.8090 0.9823 0.9823 0.8480
RF 0.9447 0.5000 0.5038 0.9715 0.9719 0.7784
ET 0.9447 0.5000 0.5000 0.9716 0.9720 0.7776
GRNN 0.9022 0.9488 0.4744 – 0.0000 0.5813
ANN 0.9467 0.9467 0.5000 – 0.0000 0.5983
PNN 0.0533 0.9467 0.5000 0.1011 0.0000 0.3202
HSNOE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Fig. 6 shows the performance of various classification algorithms
on the yeast_me2 dataset. The results indicate that PNN achieved the
highest accuracy of 96.96% on this dataset, followed closely by RF with
an accuracy of 96.75%. RF attained the best F1-score of 98.34% along
with the highest G-mean. However, DT yielded the highest AUROC at
65.57%, suggesting it could better rank the class probabilities. Tradi-
tional classifiers KNN, NB, MSVM and SVM demonstrated moderate
performance with accuracies around 96%–97% but low AUROC and
AUPRC scores near 50%, reflecting limited discriminative capacity.
Ensemble tree methods produced balanced results, with RF and ET
showing accuracies over 96% and strong F1-scores. DT’s AUPRC score
stood out though its accuracy was lower. Among neural models, PNN
and ANN achieved the highest AUPRC of 97.27% and 97.26% respec-
tively. However, their F1-scores were quite poor at below 30%. GRNN
failed to produce a valid F1-score. HSNOE delivered well-rounded
performance, attaining over 91% accuracy and AUPRC while main-
taining decent other scores. Overall, while PNN had the highest raw
accuracy, RF provided the best trade-off between accuracy, F1-score
and G-mean. DT was most effective for probability ranking. Traditional
classifiers lacked discriminative power for this problem. Neural models
had high Accuracy and AUPROC but other metrics. HSNOE emerged
as a robust algorithm for this yeast classification task and achieved the
best average performance.

5. Case study and biological analysis

To further demonstrate the general applicability of HSNOE for other
biological datasets, we conducted an analysis on a Pan-cancer dataset.
The dataset consists of 4759 tumors with 20486 genes obtained from
the Illumina RNaseq, multi-center mutation calls (MC3), and GISTIC2.0
copy number threshold calls from the TCGA PanCanAtlas project. This
9

dataset passed quality control filtering for 16 different cancer types. To
investigate the biological significance of HSNOE, we initially focused
on the 506 genes discovered by HSNOE. We performed enrichment
analyses to identify statistically enriched terms, such as Gene Ontology
(GO) and KEGG terms. Multiple enrichment analyses were conducted
using hypergeometric 𝑝-values and enrichment factors.

In Figs. 7(A), 7(B), and 7(C), we present the top 10 categories
from three ontologies ordered by their 𝑝-values. The results provide
insights into the biological functions associated with the identified
genes. For the GO biological processes, the top three enriched terms
were regionalization (GO:0003002), positive regulation of catabolic
process (GO:0009896), and anterior/posterior pattern specification
(GO:0009952). These findings suggest that the identified genes are
involved in spatial organization, regulation of cellular breakdown pro-
cesses, and the establishment of body axes. Regarding the GO cellular
component processes, the top three enriched terms were membrane
region (GO:0098589), membrane raft (GO:0045121), and membrane
microdomain (GO:0098857). This observation indicates a strong corre-
lation between the identified genes and membrane-related structures,
highlighting their potential involvement in cell membrane functions.
In terms of GO molecular function processes, the top three enriched
terms were phosphotyrosine residue binding (GO:0001784), phospho-
protein binding (GO:0051219), and protein phosphorylated amino acid
binding (GO:0045309). These findings suggest a significant association
between the identified genes and phosphorylation events, indicating
their potential role in regulating complex pathophysiological processes
within cells (Yaffe, 2002).

Next, we performed hierarchical clustering of the significant terms
based on Kappa-statistical similarities among their gene memberships (C
hen, 1960). The clustering resulted in a tree-like structure, where each
term was represented by a circle node. The size of each node was
proportional to the number of input genes associated with that term,
and its color indicated its cluster identity. Terms with a similarity
score greater than 0.3 were connected by an edge. One representative
term from each cluster was selected to display its description as a
label. The resulting enrichment network, colored by cluster ID, is
presented in Fig. 8(A). Additionally, Fig. 8(B) displays the same enrich-
ment network, but with nodes colored based on their 𝑝-values. Nodes
with darker colors represent greater statistical significance. To iden-
tify densely connected gene neighborhoods, we applied the MCODE
algorithm (Bader & Hogue, 2003) to the enrichment network. Each
MCODE network was assigned a unique color, as shown in Fig. 8(C).
Subsequently, GO enrichment analysis was performed on each MCODE
network to assign biological meanings to the network components. The
summarized results of these interpretations are presented in Fig. 8(D).
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Fig. 7. Genomic interpretability of Pan-cancer data. (A) Biological Processes; (B) Cellular Components; (C) Molecular Functions; (D) KEGG pathway analysis ordered 𝑝-value.
Fig. 8. Genomic interpretability of Pan-cancer data. (A) Enrichment network colored by cluster ID; (B) Enrichment network colored by 𝑝-Value; (C) Protein-protein interaction
network (PPI); (D) PPI MCODE components.
Furthermore, the biological interpretation of the protein-protein inter-
action (PPI) network and its MCODE components are summarized in
Table 5.

Fig. 7(D) depicts the KEGG pathway analysis of the Pan-cancer
dataset, showing the top 10 KEGG enrichments, ordered by 𝑝-value.
10
Genuinely, a total of 163 pathways from the 506 genes were suc-
cessfully annotated. The top Neurotrophin signaling pathway depicted
in Fig. 9 has seven related genes through the enrichment analysis.
Neurotrophins have essential influences on synaptic connection and the
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Table 5
Biological interpretation of PPI network & MCODE components.

Network Annotation

MyList GO:0009896 — positive regulation of catabolic process;
GO:0031331 — positive regulation of cellular catabolic process;
GO:0034764 — positive regulation of transmembrane transport.

MyList_MCODE_ALL ko04915 — Estrogen signaling pathway;
R-HSA-6798695 — Neutrophil degranulation;
hsa04915 — Estrogen signaling pathway.

MyList_SUB1_MCODE1 hsa04020 — Calcium signaling pathway;
ko04020 — Calcium signaling pathway;
ko04915 — Estrogen signaling pathway .

MyList_SUB1_MCODE2 GO:0061077 — chaperone-mediated protein folding;
R-HSA-6798695 — Neutrophil degranulation;
GO:0006457 — protein folding.

MyList_SUB1_MCODE3 R-HSA-983168 — Antigen processing: Ubiquitination & Proteasome degradation;
R-HSA-983169 — Class I MHC mediated antigen processing & presentation;
R-HSA-1280218 — Adaptive Immune System.

MyList_SUB1_MCODE4 GO:0071417 — cellular response to organonitrogen compound;
R-HSA-1257604 — PIP3 activates AKT signaling;
GO:1901699 — cellular response to nitrogen compound.

MyList_SUB1_MCODE5 R-HSA-199977 — ER to Golgi Anterograde Transport;
GO:0061025 — membrane fusion;
R-HSA-948021 — Transport to the Golgi and subsequent modification.

MyList_SUB1_MCODE6 hsa00230 — Purine metabolism;
ko00230 — Purine metabolism;
GO:1901292 — nucleoside phosphate catabolic process.

MyList_SUB1_MCODE7 R-HSA-4086398 — Ca2+ pathway;
R-HSA-373080—Class B/2 (Secretin family receptors);
R-HSA-3858494 — Beta-catenin independent WNT signaling.

MyList_SUB1_MCODE8 GO:0006936 — muscle contraction;
GO:0003012 — muscle system process.

MyList_SUB1_MCODE9 R-HSA-8957275 — Post-translational protein phosphorylation;
R-HSA-381426 — Regulation of Insulin-like Growth Factor (IGF) transport and
uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs).

MyList_SUB1_MCODE10 GO:0009952 — anterior/posterior pattern specification;
GO:0003002 — regionalization;
GO:0048568 — embryonic organ development.
plasticity signaling pathways, and are involved in many neurodegener-
ative disorders (Bothwell, 2016), demonstrating that this pathway is
highly-related to the mechanism of cancer. Particularly, we find that
most of the red genes are close to neurons or close to DNA, indicating
that HSNOE can discover the key genes in the relevant cellular activ-
ities. Therefore, we can conclude that the proposed HSNOE model is
able to discover key activity genes in important pathways and provides
biological significance of cancer gene expression data for biological use
cases.

6. Discussion

While the proposed HSNOE approach demonstrates strong perfor-
mance on binary class-imbalanced cancer diagnosis, there are some
limitations to this study that should be addressed in future work:

First, one limitation of the current study is that we have primarily
evaluated HSNOE on binary cancer classification problems. However,
many real-world cancer datasets involve multiclass prediction tasks,
such as classifying among multiple cancer types or disease stages. The
extension of HSNOE to handle multiclass scenarios has only been briefly
mentioned but not fully explored. While HSNOE utilizes a pairwise
learning framework that could potentially be extended to the multiclass
case, its performance when directly applied to problems with more than
two classes is unknown. Further work is needed to rigorously assess
HSNOE’s abilities on multiclass cancer classification and validate any
modifications made to the algorithm to handle such problems.

Second, a major limitation is that HSNOE has only been retro-
specitvely validated on historical patient cohorts, but has not under-
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gone prospective clinical validation. Without prospective testing, the
true performance and impact of HSNOE for real-time patient care
and clinical decision making remains unknown. Factors like poten-
tial dataset and protocol drift over time may cause deterioration of
HSNOE’s predictive accuracy in prospective settings. Prospective val-
idation is needed to properly evaluate HSNOE’s utility for tasks like
patient screening, diagnosis and treatment response prediction in real
practice. This current lack of prospective testing represents a barrier to
the immediate clinical adoption and implementation of HSNOE.

Third, another major limitation of the current study is the lack of
validation on real patient cohorts from clinical settings. While bench-
mark cancer genomics datasets are useful for initial development and
comparison to other methods, they represent historical data that may
differ from current patient populations in important ways. Real-world
patient data often involve additional complexities such as missing
values, inconsistencies in data capture over time, comorbidities and
concomitant treatments that could impact performance. Direct prospec-
tive evaluation of HSNOE using clinical data with outcomes adjudicated
by physicians would be required to fully understand its generalizability
and limitations when applied to real patients. Our approach of collab-
orating with clinical partners to enable such validations on healthcare
system data is an important future direction, but one that is currently
limited by our retrospective analyses only on published benchmarks.
Addressing this limitation with current and planned clinical studies will
be critical to assessing HSNOE’s true utility and readiness for practice.

Moreover, it is imperative that the development of HSNOE and
other advanced AI tools for medical applications properly addresses
important ethical issues. Strict protocols were followed to de-identify
and anonymize patient datasets in compliance with privacy and consent

regulations. However, continued efforts must be taken to evaluate
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Fig. 9. KEGG pathway analysis of Pan-cancer data. The KEGG graph of the Neurotrophin signaling pathway: the genes marked in red are the genes selected by HSNOE.
d-
models on representative and unbiased datasets to avoid unfair dis-
advantage. As an ensemble method, HSNOE also needs techniques to
explain and critique its predictions while providing avenues for error
correction. Prospective clinical validation with appropriate oversight
and approval from regulatory bodies is still required before any deploy-
ment into real-world healthcare settings. More broadly, given dual use
risks, secure access controls and ongoing discussions around informed
consent, bias mitigation, accountability, and balancing innovation with
patient welfare must accompany further AI research to ensure its safe,
responsible and trusted development for clinicians and patients.

Finally, we relied primarily on raw input features without inte-
grating substantial domain knowledge or modeling cancer biology.
Recent work shows incorporating physics-based inductive biases and
prior knowledge can boost model performance and interpretability on
biomedical problems (Zhang et al., 2022). Exploring how to build in
more cancer domain expertise into HSNOE could further improve its
abilities. One method to integrate mechanistic knowledge is through
feature engineering. By leveraging domain-specific insights, researchers
can identify relevant biological features or genetic markers that are
known to be associated with the studied phenomenon. These features
can be incorporated into the HSNOE framework as additional inputs,
allowing the model to capture the underlying biological mechanisms
more effectively. Another approach is to incorporate prior knowledge
through the construction of prior probability distributions. Mechanistic
knowledge can be used to define constraints or prior beliefs about the
relationships between genetic markers and the target variable. These
constraints can be encoded as prior probabilities, which guide the
learning process of HSNOE and help the model focus on biologically
meaningful patterns. Furthermore, incorporating mechanistic knowl-
edge can involve the use of external databases or ontologies. These
resources provide structured information about biological pathways,
gene interactions, and functional annotations. By integrating these
external knowledge sources into HSNOE, the model can leverage the
existing biological knowledge to guide its learning process and enhance
interpretability.
12
7. Conclusion

In conclusion, this study presents a novel hybrid sampling nature-
inspired optimization ensemble (HSNOE) approach for class-imbalanced
biological datasets. The key innovations of HSNOE are the integration
of hybrid sampling, ant colony optimization-based feature selection,
and a diverse ensemble method. Through extensive experiments on five
class-imbalanced datasets, HSNOE has enhanced the performance over
the other state-of-the-art methods. The main contributions of this work
are three-fold. First, we propose a novel framework integrating both
data-level and algorithm-level solutions to address class imbalance.
Second, we demonstrate the utility of nature-inspired optimization
techniques for both feature selection and ensemble learning in im-
balanced data. Third, we provide extensive empirical evidence that
HSNOE significantly improves small-class identification across diverse
biological datasets. Extensive experiments unequivocally demonstrate
the remarkable effectiveness of the proposed HSNOE model. Our results
reveal its superior overall performance when compared to ten baseline
methods, encompassing a wide range of approaches including machine
learning, ensemble methods, and deep learning techniques. Overall,
this study provides both computational and biological insights for
tackling the critical challenge of hidden responders identification in
precision oncology. In future, we plan to extend HSNOE to multi-class
settings, incorporate biological knowledge, and assess its clinical utility
through targeted trials.
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