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Abstract—Feature selection is a crucial step in data mining
to enhance model performance by reducing data dimensionality.
However, the increasing dimensionality of collected data exacer-
bates the challenge known as the “curse of dimensionality”, where
computation grows exponentially with the number of dimensions.
To tackle this issue, evolutionary computational (EC) approaches
have gained popularity due to their simplicity and applicability.
Unfortunately, the diverse designs of EC methods result in vary-
ing abilities to handle different data, often underutilizing and
not sharing information effectively. In this article, we propose a
novel approach called PSO-based Multi-task Evolutionary Learn-
ing (MEL) that leverages multi-task learning to address these chal-
lenges. By incorporating information sharing between different
feature selection tasks, MEL achieves enhanced learning ability and
efficiency. We evaluate the effectiveness of MEL through extensive
experiments on 22 high-dimensional datasets. Comparing against
24 EC approaches, our method exhibits strong competitiveness. In
addition, we have open-sourced our code on GitHub.

Index Terms—Feature selection, high-dimensional classification,
knowledge transfer, multi-task learning, particle swarm
optimization.

I. INTRODUCTION

W ITH the rapid advancement of technology, the preva-
lence of large-scale and high-dimensional data is be-

coming increasingly common in various real-world applications.
A notable example is DNA microarrays, which yield a vast
amount of information regarding gene sequences in a single
test [1]. While high-dimensional features offer the potential to
define data samples more precisely, they also present several
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challenges, including model overfitting [2], model complex-
ity [3], and lengthy model training times [4]. Moreover, the
computational complexity during model construction increases
exponentially with dimensionality, a phenomenon often referred
to as the “curse of dimensionality” in machine learning and
data mining [5]. Consequently, there is an escalating demand
for the development of efficient feature selection techniques to
effectively handle high-dimensional data.

Feature selection is an effective method to deal with such
problems [6]. There are generally three types of methods used
for feature selection: filter methods [7], wrapper methods [8],
and embedded methods [9]. Filter methods evaluate features
based on intrinsic properties of the data without involving any
learning algorithm [6]. Common filter criteria include infor-
mation measures such as variance, correlation with labels, and
mutual information [6] [7]. For example, features with near-zero
variance do not differentiate samples and can be eliminated.
Welch’s t-test and eigenvector centrality are also widely used
for filter-based feature selection [10] [11]. Filter methods are
fast but ignore interactions between features and the predic-
tive model. Wrapper and embedded methods take the predic-
tive model into account during feature selection. Essentially,
the feature selection method can be viewed as a combinatorial
optimization problem, where 2n - 1 feature combinations exist
for data containing n-dimensional features. Wrapper methods
treat feature selection as a search problem and evaluate feature
subsets using resampling methods and predictive accuracy on a
held-out validation set [12]. Brute force and sequential search al-
gorithms like sequential forward selection (SFS) and sequential
backward selection (SBS) are commonly used [13] [14]. How-
ever, these deterministic searches can get stuck in local optima.
Stochastic search methods like genetic algorithm (GA) [15],
ant colony optimization (ACO) [16] and particle swarm op-
timization (PSO) [17]. Nevertheless, evolutionary algorithms
incur high computational overhead. Embedded methods perform
feature selection during model training by assigning feature
importance weights, e.g., with decision tree based methods and
regularization terms in logistic regression [18] [19].

The goal of feature selection is to identify a compact feature
subset that maximizes classification accuracy while reducing
dimensionality. However, feature selection is an NP-hard prob-
lem, especially in high-dimensional datasets, as the computa-
tional cost of finding the optimal solution can be prohibitively
expensive [12]. Recently, evolutionary computation (EC) ap-
proaches have received significant attention for feature selection
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due to their ability to effectively explore large search spaces
and obtain approximate solutions [20] [21] [22]. Nevertheless,
high-dimensional problems pose substantial challenges. The
large search space exacerbates the “curse of dimensionality”,
rendering exhaustive search intractable. Additionally, the in-
creased risk of getting trapped in local optima hinders EC
methods’ ability to efficiently solve real-world feature selection
problems on high-dimensional data, due to their inherently high
computational complexity. Therefore, more work is still needed
to develop EC techniques that can better scale to large-scale,
high-dimensional datasets while mitigating computational costs
and avoiding premature convergence.

Particle swarm optimization (PSO) is an effective metaheuris-
tic for optimization problems. However, in high dimensions,
its performance degrades as particles become sparse in the
vast search space [23]. Multi-task learning (MTL) can leverage
common patterns across related tasks to boost learning [24].
When combined, MTL and PSO offer notable advantages for
addressing high-dimensional feature selection problems. First,
MTL maintains a population of interacting sub-swarms, retain-
ing diversity essential for exploring complex landscapes. Knowl-
edge transfer across sub-swarms circumvents premature conver-
gence. Second, MTL guides particles toward regions exhibiting
consistency across tasks. This favors selection of generalizable
features and mitigates overfitting single tasks. Third, cooperative
co-evolution accelerates convergence by sharing informative
samples between sub-swarms. This enhances PSO’s abilities to
construct high-quality solutions efficiently. In this article, we aim
to explore the potential advantages of integrating MTL with PSO
to improve the learning ability and efficiency of the algorithm.

To summarize, we utilize three E’s (Easy, Effective, Efficient)
to encapsulate our contributions in this work:
� Easy: We propose a simple yet effective PSO-based Multi-

task Evolutionary Learning (MEL) approach for high-
dimensional feature selection. MEL leverages multi-task
learning to jointly optimize related tasks and transfer
knowledge between them without complex operations.

� Effective: Extensive experiments on 22 benchmark datasets
demonstrate MEL significantly outperforms 24 state-of-
the-art EC algorithms. Results show improvements in both
classification performance and compact feature subset se-
lection.

� Efficient: By dividing the search into cooperative subtasks,
MEL learns feature importance across tasks to guide op-
timization while sharing information efficiently. Experi-
ments reveal MEL not only achieves competitive accuracy
but also faster execution times than standard PSO on high-
dimensional problems.

II. RELATED WORK

A. Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm was devel-
oped by Eberhart and Kennedy and mimics the behavior of a
flock of birds foraging for food [25]. Assume a D-dimensional
search space and a particle swarm containingN particles search-
ing for the global optimal solution under its constraints, each

particle contains the information of three D-dimensional vec-
tors, namely: velocity vector �Vi = {�V1

i ,
�V2
i , . . .,

�VDi }, position
vector �Xi = { �X 1

i ,
�X 2
i , . . .,

�XDi } and its own optimal position
vector �Pi = {�P1

i ,
�P2
i , . . .,

�PDi }. The velocity vector represents
the distance that the particle has passed in each dimension, and
the optimal position vector of itself is the best position that
each particle has reached individually. The population should
consider the global optimal position, i.e., the optimal position of
the particle in the population that makes the best fitness value,
denoted as �Pg = {�P1

g , �P2
g , . . ., �PDg }. The state of a particle is

characterized by two factors, its position and velocity, whose
update rules are expressed by the following two equations:

�Vk
i = ω�Vk−1

i + c1r1(�Pk−1
i − �X k−1

i ) + c2r2(�Pk−1
g − �X k−1

i )

(1)

�X k
i = �X k−1

i + �Vk−1
i (2)

where k denotes the number of iterations; i is the ith particle in
the population;ω is the inertia weight, which indicates the degree
of the particle influenced by itself, and it can adjust the flight
speed of the particle so that the particle tends to converge; c1 and
c2 are learning factors, which indicate the degree of the particle
influenced by individual experience and population experience,
respectively.

PSO has been widely used for feature selection due to its
simplicity and ease of implementation. A few early studies
have applied the basic PSO to select features in medium-scale
datasets. For example, Prasad et al. [26] used a PSO-based
method to refine the gene space to a fine grained one from
microarray data. Cheng et al. [27] introduced PSO-SQI for illu-
mination normalization using PSO to select features in quotient
images. However, directly applying PSO becomes inefficient
for high-dimensional datasets due to the large search space. To
address this issue, several variations of PSO have been proposed
for feature selection [28] [29]. While these methods achieved
improved performance over the basic PSO, they did not fully
address the computational challenges of high-dimensionality.
Directly evaluating all features in each iteration remains costly
as the dimensionality increases. Additionally, existing PSO vari-
ants do not take into account the dependencies between features.

B. Multi-Task Learning

Definition 1. (Multi-task Learning): A machine learning
method based on shared representation, which learns n related
tasks {Ti}ni=1 together and uses the association information
between tasks {Ti}ni=1 to improve generalization [24].

Multi-task learning is very related to transfer learning. Unlike
transfer learning, which focuses more on improving the target
task, multi-task learning emphasizes on improving the perfor-
mance of each task equally through shared information [24] [30].
A key idea in multi-task learning is that the tasks are related
and information can be shared across tasks. A very interesting
real-life example is that if a person learns to play ping pong, he
may soon be able to learn to play tennis. After he learns to play
tennis, these skills will also help him improve his performance in
playing badminton. The common skills acquired in the process
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of learning these sports can help improve performance in each
of them.

There are a few key approaches in multi-task learning. One ap-
proach is parameter sharing, where parts of the machine learning
model, such as the lower layers of a neural network, are shared
among all tasks during training. Tasks can also be clustered based
on relatedness, with more related tasks sharing more parameters.
Multi-task learning is considered to be a promising field of
machine learning and has achieved a wide range of applications.
For example, it has been applied to multimodal fields [31],
deep reinforcement learning [32], hotspot detection [33], App
survival prediction [34], and natural language processing [35].
Chen et al. [36] jointly predicted the status of MGMT and IDH1
genes using a multi-task feature selection approach. Moreover,
Liu et al. proposed a graph-guided regularization multi-task
learning method to perform feature selection [37].

Recently, we have noticed an increasing number of studies
applying multi-task learning in evolutionary computation (EC)
field to improve performance [38] [39] [40] [41]. Moreover,
feature selection methods based on evolutionary multitasking
have also been proposed. For instance, Zhang et al. [42] designed
a multitask evolutionary machine learning framework (MEML)
and conducted a case study on feature selection. However, they
mainly focus on large-instance data and do not study high-
dimensional data enough. In their experiments, the medium-
sized data selected is smaller than or equal to 500 dimensions,
with the exception of a 5,000-dimensional data. In large-sized
data, all data is smaller than 200 dimensions. Chen et al. [43]
proposed an evolutionary multitask feature selection method for
high-dimensional classification by evaluating the importance of
features and establishing two related tasks about the concept
of goals. They designed a crossover operator for information
sharing, and proposed two mechanisms called variable-range
strategy and subset updating to reduce the searching space
and increase the diversity of population. In their subsequent
research [44], they start from the perspective of transforming
high-dimensional feature selection problems into multiple low-
dimensional feature selection problems, and design a new task
generation strategy and a knowledge transfer mechanism. We
note that in the above two studies, ReliefF was used to calculate
the importance of features and a knee point selection scheme was
designed to select the appropriate subset of features. However, as
they also mention in the article, selecting an appropriate subset
requires domain knowledge. If a feature subset is obtained by
preselection through a inappropriate threshold, the valid infor-
mation in the original dataset is likely to be lost. At the same time,
they designed many mechanisms to ensure the effectiveness of
the proposed algorithm, which also increased the complexity of
the algorithm.

III. METHODOLOGY

A. Overview of the Proposed MEL

In this study, we develop an evolutionary learning approach
that incorporates multitasking learning for high-dimensional
feature selection. The main idea is to divide the parent population
into two subpopulations, dubbed subpopulation1 ( �Sub1) and

Fig. 1. Schematic diagram of the proposed MEL method. The parent popu-
lation is divided into two subpopulations: �Sub1learns the feature importance
during evolution, and its search is affected by �Sub2 best. �Sub2 also learns the
importance of features during evolution, and searches for the optimal feature
subset based on the results learned from �Sub1 and �Sub2. In particular, features
with higher weights have a higher probability of being selected.

subpopulation2 ( �Sub2), each dedicated to searching for an
optimal feature subset independently in its own search mode. To
illustrate this process clearly, we provide a visual representation
in Fig. 1. Fig. 1 demonstrates that the particles in �Sub1 are in-
fluenced by �Sub2 during the search process. This means that the
knowledge and experience gained by �Sub2 will guide the search
of �Sub1. Specifically, �Sub1 conducts its search and updates the
learned feature importance. Simultaneously, �Sub2 also learns
the feature importance during its search process. Furthermore,
the search of �Sub2 is guided by the combined feature impor-
tance learned by both subpopulations. In this guidance mech-
anism, features with higher weights have a greater probability
of being selected. To provide a comprehensive understanding
of the proposed approach, we outline the detailed steps in
Algorithm 1.

B. Evolutionary Initialization

In the particle swarm optimization population, each particle
�Pi can be represented as: �Pi = {F1,F2, . . .,FD}, where F is
the feature space, D denotes dimensions of the input features.
We then initialize the particles randomly, with the value of
each particle expressed as a real number. To select a subset of
features for evaluation in evolution, we use a threshold value θ
for binarization operation to determine the selected features. In
particular, ifFn is greater than θ, it means that the corresponding
feature is selected for evaluation; otherwise, the corresponding
feature is not selected. At the same time, we set a weight matrix
to record the weight of each feature. Initially, the weights of all
features are set to 0. After initializing the population, we record
the individual best (�Pi), global best (�Pg), and subpopulation best
(�Ps) solutions. Subsequently, each particle’s selected feature
subset is evaluated, and based on the evaluation results, the
feature weights are updated.
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Algorithm 1. Multi-Task Evolutionary Learning Method
Input: NP: the size of population, T : the number of
iterations.

Output: num: The number of selected features; acc: The
classification accuracy.

1: Initialize a PSO population with NP individuals;
2: Initialize the weights of all features to 0;
3: Divide the population into two equal-sized

subpopulations �Sub1 and �Sub2 that each perform a task;
4: Evaluate each particle, the individual best �Pi,

subpopulation best �Ps and global best �Pg are recorded;
5: while t ≤ T do
6: �Sub1: Get the knowledge from �Sub2 and search based

on it; Update the weights of all features, �Pi, �Ps and
�Pg;

7: �Sub2: The search is performed based on the learned
feature weights, and features with higher weights have
a higher probability of being selected; Update the
weights of all features, �Pi, �Ps and �Pg;

8: end while
9: return num, acc←− �Pg .

C. Knowledge Learning

In this section, we aim to address the following fundamental
question, which serves as the core motivation behind our algo-
rithm:

Question 1: How can we identify valuable features?
High-dimensional data typically contains a mixture of rele-

vant, irrelevant and redundant features [6]. This motivates us
to select as many relevant features as possible while avoiding
irrelevant and redundant ones. Ideally, all the selected features
would be relevant. However, in wrapper methods, feature subsets
are typically selected and evaluated by a learner, making it
challenging to directly measure the importance of each feature.
Additionally, the evolutionary process is iterative. Hence, we
propose utilizing historical information to learn the impor-
tance of features and employ this knowledge in subsequent
evolutionary iterations to achieve improved learning outcomes.
Consequently, this study incorporates the concept of feature
importance, enabling us to identify valuable features through
their respective importance scores.

Definition 2. (Feature Importance): The importance of a fea-
ture is measured by the change in accuracy resulting from its
appearance or disappearance during the evolutionary process.

To provide a clearer explanation of feature importance, we
will further elaborate on the above definition. Specifically, after
one iteration of evolution, if the classification accuracy of an
individual �Pi improves, the weight of the newly selected fea-
tures Fn ↑ in that iteration will be increased by the increment
in accuracy. Conversely, the weight of the discarded features
Fn ↓ in that iteration will be decreased by the same amount
of increment. On the other hand, if the classification accuracy
of an individual �Pi decreases, the weight of the newly selected
featuresFn ↑ in that iteration will be decreased by the decrement

in accuracy, while the weight of the discarded features Fn ↓ in
that iteration will be increased by the same amount of decrement.
We denoteacci as the accuracy obtained in the current generation
and acci−1 as the accuracy obtained in the previous generation.
For each evaluation, two cases are considered:

Case 1: The acci obtained by �Pi is greater than acci−1.

W(Fn) =

{
W(Fn) + (acci − acci−1), Fn ↑
W(Fn)− (acci − acci−1), Fn ↓

(3)

Case 2: The acci obtained by �Pi is less than acci−1.

W(Fn) =

{
W(Fn)− (acci−1 − acci), Fn ↑
W(Fn) + (acci−1 − acci), Fn ↓

(4)

We employW(Fn) to denote the weight of feature Fn. The
notation Fn ↑ represents a feature that was not present in the
previous round of evolution but has been newly selected in
the current round. Conversely, Fn ↓ represents a feature that
was present in the previous round but has been discarded in
the current round. For features that have remained unchanged,
no specific action is taken. Our evaluation process for feature
importance is based on each function evaluation during the
evolutionary process. Unlike the approaches in [43] and [44],
which employ Relief to evaluate features at the initial stage,
our method ensures that the information from the original data
is retained. In each iteration, every feature has a probability of
being selected, but features with higher weights are more likely
to be chosen, indicating their significance.

Question 2: How can we maintain the diversity of the popu-
lation?

In traditional EC algorithms, the evolution process often
becomes trapped in local optima, which limits the algorithm’s
global search ability. To address this issue, the use of a multi-
population mechanism has been proposed as an effective method
to improve population diversity and avoid premature conver-
gence. Several studies have demonstrated its successful appli-
cation in the field of feature selection [21] [45]. Collaboration
among multi-populations presents a promising application sce-
nario for multitask learning, which can enhance the evolution’s
performance. Therefore, in this study, we integrate the concept of
multitask learning into the multi-population mechanism, allow-
ing each subpopulation to independently search for the optimal
feature subset using their own search strategy.

To develop an efficient yet simple method, only two subpop-
ulations are used in our approach. Maintaining two distinctive
subpopulations can help balance exploration and exploitation
during the search. Additionally, since we have a population size
of 20, setting too many subpopulations would result in too few
particles in each subpopulation, rendering it inappropriate. Since
all particles are learning knowledge (feature importance), our
idea is to set up two subpopulations, where one subpopulation is
influenced by the other subpopulation on the basis of the original
PSO search mechanism, while the other subpopulation searches
based on feature importance to increase search efficiency. Here,
we give the definition of two tasks.

Definition 3. (Task 1): Subpopulation1 ( �Sub1) conducts the
search for the optimal feature subset based on the influence of
individual best, subpopulation2 ( �Sub2) best, and global best.
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The search strategy in Task 1 can be based on the original PSO
mechanism or any other suitable search algorithm. For example,
each particle in �Sub1 can update its position by considering its
individual best solution, the best solution found by any particle
in �Sub2, and the global best solution found by any particle in the
population. This strategy allows �Sub1 to explore the search space
by leveraging the collective knowledge of both subpopulations.

Definition 4. (Task 2): Subpopulation2 ( �Sub2) searches the
optimal feature subset based on the feature importance informa-
tion learned by the two subpopulations ( �Sub1 and �Sub2).

The search strategy in Task 2 focuses on exploiting the feature
importance knowledge acquired during the learning phase. This
can involve methods such as ranking the features based on their
importance scores and selecting the most informative ones. �Sub2
can update its position and velocity accordingly to guide the
search towards the most relevant features.

D. Knowledge Transfer

In our algorithm, each subpopulation learns independently
and enhances its search ability through knowledge transfer.
Specifically, we will use two cases to illustrate the knowledge
transfer to �Sub1 and �Sub2 respectively.

Case 1: Knowledge transfer to �Sub1 .
In traditional particle swarm optimization (as shown in formu-

las (1) and (2)), particles modify their position and velocity by
taking into account their past movements (inertia), their personal
experience (cognitive state), and information about the best
particle in the swarm (socialization). In our approach, which
involves two subpopulations, we allow the first subpopulation
�Sub1 to learn from the second subpopulation �Sub2. Here, we

let �Sub1 be influenced by the subpopulation best of �Sub2. The
update process is as follows:

�Vk
i = ω�Vk−1

i + c1r1(�Pk−1
i − �X k−1

i ) + c2r2(�Pk−1
g − �X k−1

i )

+ c3r3(�Pk−1
s − �X k−1

i ) (5)

�X k
i = �X k−1

i + �Vk−1
i (6)

where c3 is the learning factor learns knowledge from another
subpopulation, r3 is a random value range from [0,1], and �Pk−1

s

is the best individual in the second subpopulation �Sub2.
Case 2: Knowledge transfer to �Sub2 .
When we utilize information from the feature weight matrix,

we need to consider that after the operations in formulas (3) and
(4), the weight values associated with each feature in the weight
matrix may fall into one of three categories: less than 0, equal
to 0, or greater than 0. In our algorithm, �Sub2 aims to select
features for evaluation by considering their importance during
the evolution process. It excludes features that have importance
values less than or equal to 0, which helps in reducing evaluation
costs and improving the efficiency of the feature search. This
approach allows �Sub2 to concentrate its search resources on the
most important features. The selection process based on feature
importance in �Sub2 can be summarized as follows:

δ =

D∑
n=1

W(Fn), ∀W(Fn) > 0 (7)

TABLE I
12 HIGH-DIMENSIONAL GENETIC DATASETS

We first calculate the sum of the weight values of all features
whose weight values W(Fn) are greater than 0, denoted as δ.
When selecting features in �Sub2, the probabilities of all features
with weights less than or equal to 0 are set to 0, meaning that we
do not select these features in this iteration. Here, features with
weights greater than 0 are considered important features. These
features are selected with the following probabilities ρ:

ρ =
W(Fn)

δ
, ∀W(Fn) ≥ 0 (8)

E. Fitness Function

In this study, our focus is on discovering the smallest feature
subset while achieving the largest classification result. There-
fore, two aspects need to be considered in the design of objective
function: classification accuracy and feature subset size. Here,
we aim to select a feature subset that is as small as possible
to avoid the computational cost and high model complexity
caused by high-dimensional features. Simultaneously, we need
to maintain an adequate number of features to ensure high
classification accuracy. Based on the above considerations, we
set the objective function as follows:

f = α · error_rate+ β
num_of_SF

|F| (9)

where error_rate is the classification error rate, num_of_SF
denotes the size of selected features, |F| represents the number
of features in the feature search space, α is the control weight of
classification results and β is the feature size control weight. The
settings of parameters α (0.9) and β (0.1) refer to reference [44].

IV. IMPLEMENTATION

A. Datasets

We use 12 public high-dimesnional genetic datasets for our
experiments [46]. Among these data, most of them have more
than 7,000 dimensions, with the largest reaching 54,675 dimen-
sions. They are available on Github,1 and the details of these
datasets are presented in Table I.2

1https://github.com/xwdshiwo
2The two class labels “Pos” and “Neg” in Table I represent the positive and

negative class labels, respectively.
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TABLE II
10 HIGH-DIMENSIONAL DATASETS WITH THOUSANDS OF SAMPLES

To assess the impact of our proposed algorithm on datasets
with a larger number of samples, we conducted experimental
evaluations using high-dimensional and larger-sample datasets
from various domains. These datasets include Text Data, Face
Image Data, and Hand Written Image Data. The Pancancer
dataset was sourced from reference [47], while the HAPT-
DataSet, and MultipleFeaturesDigit datasets were obtained from
reference [17]. The remaining datasets can be downloaded from
the “Feature Selection” website.3 For detailed information about
these datasets, please refer to Table II.

B. Baselines

1) Representative Classic Methods: To illustrate the perfor-
mance of our method, 18 evolutionary computation algorithms
were employed. According to the classification methods in
literature [48], we selected four swarm-based methods (in-
spired by mutual behavior of swarm creatures), four nature-
inspired methods (inspired by natural system), two evolution-
ary algorithms (inspired by natural selection concepts), four
bio-stimulated methods (inspired by the foraging and hunting
behavior in the wild) and four physics-based methods (inspired
by physical rules). These meta-heuristic optimization methods
basically represent the most classical, representative, and widely
used methods in the field.
� Swarm-based methods: Artificial Bee Colony (ABC) [49],

Ant Colony Optimization (ACO) [50], Particle Swarm Op-
timization (PSO) [51] and Monarch Butterfly Optimization
(MBO) [52].

� Nature-inspired methods: Bat Algorithm (BAT) [53],
Cuckoo Search Algorithm (CS) [54], Firefly Algorithm
(FA) [55] and Flower Pollination Algorithm (FPA) [56].

� Evolutionary algorithms: Differential Evolution (DE) [57]
and Genetic Algorithm (GA) [58].

� Bio-stimulated methods: Fruit Fly Optimization Algorithm
(FOA) [59], Grey Wolf Optimizer (GWO) [60], Harris
Hawks Optimization (HHO) [61] and Whale Optimization
Algorithm (WOA) [62].

� Physics-based methods: Simulated Annealing (SA) [63],
Harmony Search (HS) [64], Gravitational Search Algo-
rithm (GSA) [65] and Multi Verse Optimizer (MVO) [66].

2) Recently Published Evolutionary Methods: In recent
years, the field of feature selection has witnessed remarkable

3https://jundongl.github.io/scikit-feature/datasets.html

advancements and novel approaches. With the goal of explor-
ing the latest developments and expanding the scope of our
study, we have incorporated six evolutionary methods for feature
selection published in recent four years (SaWDE [21], FW-
PSO [17], VGS-MOEA [67], MTPSO [44], PSO-EMT [43] and
DENCA [68]). These methods represent the cutting-edge re-
search in the field and offer promising solutions to the challenges
at hand. By incorporating these state-of-the-art evolutionary
algorithms, we aim to enhance the effectiveness and robustness
of our proposed framework.

C. Experimental Setup

In Section V parts A-E, our experiments are run on a Cen-
tOS server equipped with an Intel(R) Xeon(R) Silver 4215R
CPU @ 3.20GHz, 16GB of RAM using MATLAB R2019b.
Furthermore, in Section V parts F-G, our experiments are run
on MATLAB R2023b with a 13th generation i7-13700KF CPU
and 64GB of memory. In particular, this study quantified running
time in seconds. We obtained most of our baseline approaches
from this online toolbox.4 To ensure the fairness of the exper-
iment, we respect the original setting of the algorithm in the
toolkit. In addition, for all algorithms, we set the number of
populations (NP) to 20 and the maximum number of iterations
(T) to 100. At the same time, we set a threshold value (θ) of 0.6 to
convert the value of the real number field into a discrete value, so
as to decide whether to choose the feature of the corresponding
field. In this study, KNN classifier is employed with K equals
to 3. Our classification accuracy is calculated using a five-fold
cross-validation average. We performed each experiment ten
times and averaged the data to make sure the experimental results
were stable.

V. RESULTS AND ANALYSIS

Our experiments included a comprehensive comparison of
our method with various influential and diverse approaches
in the field, such as swarm-based, nature-inspired, evolution-
ary algorithms, bio-inspired, and physics-based methods. This
comparison aimed to demonstrate the breadth of our method’s
capabilities and its ability to outperform and complement ex-
isting techniques in feature selection. In addition, we specif-
ically compared our method with the latest advancements in
EC methods for feature selection published in the past four
years. This comparison was crucial to assess the novelty and
competitiveness of our approach against the most recent devel-
opments in the field. Furthermore, we conducted experiments
on larger datasets to showcase the effectiveness of our method
in handling datasets with a larger sample size. This analysis
aimed to highlight the scalability and generalizability of our
method, ensuring its applicability to real-world scenarios with
extensive and diverse data. For each experiment, we compared
and discussed the classification accuracy, feature subset size,
and training time. In terms of these metrics, higher classifi-
cation accuracy is desirable, while smaller feature subset size
and shorter training time are preferable. Each experiment was

4https://github.com/JingweiToo/Wrapper-Feature-Selection-Toolbox
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TABLE III
COMPARISON WITH SWARM-BASED HEURISTIC METHODS ON ACCURACY

TABLE IV
COMPARISON WITH SWARM-BASED HEURISTIC METHODS ON SUBSET SIZE

repeated 10 times, and the average values (denoted as “Mean”)
and standard deviations (denoted as “Std”) were calculated. The
best results are highlighted in bold. In addition, it’s worth noting
that for some datasets, the results are indicated by ‘-’ because
the methods were unable to obtain results due to limitations in
memory, running time or the algorithms themselves.

Overall, in Section V parts A-F, our MEL method achieved
the best average performance across 12 datasets compared to
the 18 EC methods and the additional five recently published
EC methods specifically designed for feature selection. Our
method outperformed other methods in terms of classification
accuracy and ranked second in terms of feature subset size,
following the FWPSO method. In terms of running time, our
method performed slightly slower than SaWDE and Simulated
Annealing (SA). In Section V part G, we also conducted exper-
iments on an additional set of 10 datasets with a larger number
of samples. In this case, we compared our method with five
representative algorithms. The results demonstrated the superior
overall performance of our method in terms of various evaluation
metrics.

A. Comparison With Swarm-Based Heuristic Methods

Table III presents the classification accuracy results of MEL
and four swarm-based heuristic methods. It is evident that MEL
achieves the highest classification accuracy on 8 out of 12
datasets and demonstrates the best overall performance. Notably,
due to excessive memory requirements, ACO was unable to
process the Stroke dataset, and therefore its results are not
available for comparison. ABC and ACO exhibit strengths in
handling certain datasets, while MBO’s average performance
ranks second only to MEL among the 18 algorithms compared.
Table IV displays the sizes of feature subsets obtained by these
algorithms. It is noteworthy that, in comparison to the second-
ranked ACO algorithm, MEL achieves an average subset size

TABLE V
COMPARISON WITH SWARM-BASED HEURISTIC METHODS ON RUNNING TIME

TABLE VI
COMPARISON WITH NATURE-INSPIRED HEURISTIC METHODS ON ACCURACY

of only approximately 33%. These findings indicate that the
MEL algorithm significantly reduces model complexity while
maintaining high accuracy in inference.

Figs. 2 and 3 depict the convergence curves of these algo-
rithms in terms of classification accuracy and feature subsets,
respectively. From Fig. 2, it is evident that MEL exhibits superior
search capability across most datasets, particularly in cases such
as ALL3, ALL4, CNS, Colon, and Lymphoma. Fig. 3 illustrates
that both ACO and MEL demonstrate strong search abilities for
relevant features. However, unlike ACO, which exhibits some
fluctuations in the curve during the search process, MEL main-
tains better stability. Table V displays the running times of the
algorithms on all datasets, including their average performance.
It is noteworthy that MEL exhibits the shortest running time
among all datasets, indicating its efficient search capability.
In comparison to the original PSO algorithm, MEL achieves
a running time that is nearly half. Conversely, ACO exhibits
significantly longer running times across all datasets compared
to other EC algorithms, suggesting that ACO may not be suitable
for processing high-dimensional data.

B. Comparison With Nature-Inspired Heuristic Methods

Table VI presents the classification accuracy results of MEL
and four other nature-inspired heuristic methods. It is evident
that MEL achieves the highest classification accuracy on 9 out
of 12 datasets and demonstrates the best overall performance.
Additionally, Table VII highlights that the average feature sub-
set size obtained by MEL is approximately 1/7 of the sizes
obtained by the other nature-inspired methods, with the latter
all exceeding 5000. Figs. 4 and 5 display the convergence
curves of these algorithms in terms of classification accuracy
and subset size, respectively. From Fig. 4, it can be observed that
although MEL did not initially achieve the best performance, it
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Fig. 2. Convergence Curves of Swarm-based EC Algorithms in Terms of Accuracy.

Fig. 3. Convergence Curves of Swarm-based EC Algorithms in Terms of the Size of Feature Subset.

Fig. 4. Convergence Curves of Nature-inspired EC Algorithms in Terms of Accuracy.

Fig. 5. Convergence Curves of Nature-inspired EC Algorithms in Terms of the Size of Feature Subset.
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Fig. 6. Convergence Curves of Evolutionary Algorithms in Terms of Accuracy.

TABLE VII
COMPARISON WITH NATURE-INSPIRED HEURISTIC METHODS ON THE SUBSET

SIZE

TABLE VIII
COMPARISON WITH NATURE-INSPIRED HEURISTIC METHODS ON RUNNING

TIME

quickly outperformed the other methods on most datasets. MEL
exhibits slower convergence but demonstrates stronger global
search ability. Fig. 5 illustrates that while the curves of the
other methods stabilize quickly, MEL effectively searches for
the optimal feature subset throughout most of the entire cycle.

In Table VIII, we conducted extensive experiments by com-
paring the running times of the nature-inspired heuristic meth-
ods. For the Adenoma, ALL_AML, Gastric, and Stroke datasets,
the FA algorithm achieved running times of 8.0 ± 1.4, 13.8 ±
3.4, 1.7± 0.1, and 2.3± 0.1, respectively, which are smaller than
the other four algorithms. However, considering the algorithm’s
generality, our proposed algorithm outperforms the other four
algorithms on 8 out of 12 datasets while maintaining a lower
average running time.

TABLE IX
COMPARISON WITH EVOLUTIONARY ALGORITHMS ON ACCURACY

TABLE X
COMPARISON WITH EVOLUTIONARY ALGORITHMS ON THE SUBSET SIZE

TABLE XI
COMPARISON WITH EVOLUTIONARY ALGORITHMS ON RUNNING TIME

C. Comparison With Evolutionary Algorithms

We also evaluated classic evolutionary algorithms, including
differential evolution (DE) and genetic algorithm (GA). For
GA, we considered two mechanisms: Roulette and Tourna-
ment. Extensive experiments were conducted, and the results are
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Fig. 7. Convergence Curves of Evolutionary Algorithms in Terms of the Size of Feature Subset.

TABLE XII
COMPARISON WITH BIO-STIMULATED HEURISTIC METHODS ON ACCURACY

TABLE XIII
COMPARISON WITH BIO-STIMULATED HEURISTIC METHODS ON SUBSET SIZE

presented in Table IX, which compares the accuracy achieved
by MEL with that of evolutionary algorithms. Remarkably,
MEL consistently achieves the highest classification accuracy
on nearly all datasets. Furthermore, the results of subset sizes
(Table X) and running times (Table XI) further demonstrate the
distinct advantage of MEL over these evolutionary algorithms.

Figs. 6 and 7 illustrate the convergence curves of these al-
gorithms during the iterative process. In the figures, “GA +
Roulette” is represented as GA, and “GA + Tournament” is
represented as GAt. It is evident from the figures that MEL ex-
hibits significant advantages over these methods. Additionally,
we observed that the difference between GA methods using the
Roulette and Tournament mechanisms was not substantial.

D. Comparison With Bio-Stimulated Heuristic Methods

Tables XII and XIII present the results of MEL and bio-
stimulated methods in terms of classification accuracy and fea-
ture subset size. Figs. 8 and 9 depict the convergence curves
of MEL and bio-stimulated methods in terms of classification
accuracy and feature subset size, respectively. Overall, MEL

TABLE XIV
COMPARISON WITH BIO-STIMULATED HEURISTIC METHODS ON RUNNING

TIME

outperforms the bio-stimulated methods in both classification
accuracy and subset size. However, we observed that algorithms
such as GWO, HHO, and WOA, which were proposed in recent
years, exhibit superior search capabilities on certain datasets
(e.g., ALL_AML, DLBCL, Leukemia). It is worth noting that
these algorithms demonstrate promising performance in specific
scenarios but do not consistently outperform MEL across all
datasets.

Furthermore, our proposed method demonstrates superior
accuracy and computational efficiency compared to bio-inspired
heuristic methods, as indicated in Table XIV. It is evident that the
MEL algorithm exhibits slightly lower runtimes than the FOA
algorithm for the Leukemia and Stroke datasets. On average, the
MEL algorithm requires only half the time to run compared to
the FOA algorithm across all 12 datasets. Additionally, when
compared to the second-ranked WOA algorithm, the MEL al-
gorithm improves runtime efficiency by approximately 29.1%.
In summary, the MEL algorithm not only achieves higher accu-
racy but also demonstrates improved computational efficiency
compared to bio-inspired heuristic methods.

E. Comparison With Physics-Based Heuristic Methods

Table XV presents the classification accuracy results of the
physics-based method, and Fig. 2 in Appendix-C, available
online displays the convergence curves for each dataset. It is
evident that MEL achieved the best performance on 10 out
of the 12 datasets. However, we also observed that the GSA
method showed competitiveness, as its convergence curves on
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Fig. 8. Convergence Curves of Bio-stimulated EC Algorithms in Terms of Accuracy.

Fig. 9. Convergence Curves of Bio-stimulated EC Algorithms in Terms of the Size of Feature Subset.

TABLE XV
COMPARISON WITH PHYSICS-BASED HEURISTIC METHODS ON ACCURACY

TABLE XVI
COMPARISON WITH PHYSICS-BASED HEURISTIC METHODS ON THE SUBSET

SIZE

the DLBCL, Leukemia, and Prostate datasets exhibited search
abilities comparable to those of MEL. Table XVI reports the
results of the physics-based method on subset size, and Fig. 3
in Appendix-C, available online depicts the convergence curves

TABLE XVII
COMPARISON WITH PHYSICS-BASED HEURISTIC METHODS ON RUNNING TIME

for each dataset. Notably, GSA achieved the smallest feature
subset size on the DLBCL and Prostate datasets.

The running times of physics-based heuristic methods are
compared in Table XVII. Overall, the physics-based approach
demonstrates fast execution. Notably, SA stands out as it runs
approximately one-tenth the time of MEL (6.5± 0.5). However,
it is important to note that SA exhibits the lowest average clas-
sification accuracy among all the algorithms, indicating that its
fast search strategy sacrifices some classification performance.
Taking into account factors such as algorithm complexity, accu-
racy, and runtime, we can conclude that MEL is an efficient
and effective method. It strikes a balance between accuracy
and computational efficiency, making it a favorable choice in
practice.
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TABLE XVIII
COMPARISON WITH RECENTLY PUBLISHED EVOLUTIONARY METHODS ON

ACCURACY

TABLE XIX
COMPARISON WITH RECENTLY PUBLISHED EVOLUTIONARY METHODS ON THE

SUBSET SIZE

TABLE XX
COMPARISON WITH RECENTLY PUBLISHED EVOLUTIONARY METHODS ON

RUNNING TIME

F. Comparison With Recently Published Evolutionary
Methods

The provided tables (Tables XVIII, XIX, and XX) present
a detailed comparison of the performance of several recently
published evolutionary methods, including SaWDE [21], FW-
PSO [17], DENCA [68], VGS-MOEA [67], PSO-EMT [43]
and the proposed MEL in this study. The analysis focuses on
three key evaluation metrics: accuracy, the size of the selected
feature subset and the running time across various datasets.
For a fair comparison with other algorithms, we re-run the
experiment of our MEL algorithm on MATLAB R2023b with
a 13th i7-13700KF CPU and 64GB of memory. It can be seen
that the proposed MEL algorithm achieves the highest average
accuracy of 94.55% across all datasets, outperforming the other
state-of-the-art algorithms. MEL obtains the best accuracy on
10 out of the 12 datasets. This demonstrates the effectiveness
of MEL in selecting an optimal subset of features that leads
to high classification performance. Regarding the size of the
selected feature subset (Table XIX), it can be observed that
FWPSO generally finds the smallest subsets, with an average
size of just 2.8 features. Although small subset is preferable

TABLE XXI
ACCURACY COMPARISON ON DATASETS WITH LARGE SAMPLE SIZE

as it simplifies the model and improves understandability, MEL
achieves a favorable trade-off between accuracy and subset size.
In addition, MEL’s search efficiency is also competitive, second
only to SaWDE.

In summary, MEL achieves the best balance of high clas-
sification accuracy, optimal subset size selection and efficient
running time compared to other evolutionary algorithms. While
some methods may get higher accuracy on a few datasets, MEL
performs consistently well on most datasets. The subset search of
MEL effectively finds representative features to classify samples
accurately within a reasonable time limit.

G. Experiments With Larger Data Samples

This section analyze how MEL performs on larger datasets
compared to other methods. Table XXI shows MEL achieved
the highest average classification accuracy of 88.64%, outper-
forming other methods on 6 out of 10 datasets. This demon-
strates MEL’s effectiveness in selecting informative features,
even for datasets with thousands of samples and features. As
shown in Table II in Appendix-D, available online, MEL selects
medium-sized feature subsets compared to other algorithms.
FWPSO selects the smallest subsets but attains much lower
accuracy. MEL achieves an optimal balance between subset
size and performance. Table III in Appendix-D, available online
reveals MEL has the second best average runtime of 486.1
seconds, significantly faster than all methods except SaWDE.
PSO-EMT incurs extremely high computational costs, making
it impractical for real-world applications. In conclusion, MEL
demonstrates excellent scalability for feature selection on large,
high-dimensional datasets. It efficiently produces compact sub-
sets that yield high accuracy. The balanced optimization of
effectiveness, efficiency and subset quality exhibited by MEL
makes it well-suited for real-world applications involving Big
Data.

VI. CONCLUSION AND FUTURE WORK

In this article, we propose a PSO-based multi-task learning
method called MEL for high-dimensional feature selection.
MEL evolves by continuously learning the importance of indi-
vidual features through the entire population. Specifically, two
subpopulations are constructed in MEL and each independently
searches for the optimal feature subset using different methods.
The first subpopulation ( �Sub1) realizes knowledge transfer by
incorporating the influence of the optimal solution from the other
subpopulation ( �Sub2) during its search process. �Sub2 narrows
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the search scope and improves its ability to identify potentially
valuable features, with the help of feature importance infor-
mation learned by the whole population. Knowledge is shared
between the two subpopulations through multi-task learning to
enhance the search ability and efficiency of the algorithm.

We evaluate the effectiveness of our method using three met-
rics: accuracy, feature subset size, and algorithm running time.
Extensive experiments on 12 high-dimensional genetic datasets
showed that MEL can effectively improve classification accu-
racy while obtaining a small feature subset. MEL also showed
highly competitive running time compared to 18 state-of-the-art
meta-heuristic optimization algorithms and five recently pub-
lished evolutionary feature selection methods. Additionally, we
provided further experiments on a separate set of 10 larger
sample size datasets, comparing MEL against five representative
algorithms. The results demonstrated MEL’s superior overall
performance in classification metrics, validating its effectiveness
on high-dimensional data with both few and many samples.
Despite the encouraging results of our study, some directions
are still worth pursuing. For example, the data discussed in this
study are basically class balanced. However, class imbalance
data is also very common in real life, and how to address it
better still needs a lot of efforts.
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