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APPENDIX

A. Representative Classic Meta-heuristic Optimization Algo-
rithms

To demonstrate the effectiveness of our approach, we
employed a total of 18 evolutionary computation algorithms in
the first phase of the experiment. Following the classification
methods outlined in the literature [1], we carefully selected
four swarm-based methods, four nature-inspired methods, two
evolutionary algorithms, four bio-stimulated methods, and four
physics-based methods. These choices are depicted in Figure
1. These meta-heuristic optimization methods that we have
chosen are considered to be the most classical, representative,
and extensively utilized techniques in the field. In this section,
we will provide a brief introduction to each of these methods.

1) Artificial Bee Colony (ABC) [2]: It simulates the
biological behaviour of honeybees cooperate with each
other to collect honey through individual division of labor
and information exchange.

2) Ant Colony Optimization (ACO) [3]: ACO is inspired
by the foraging behavior of ant colonies to find their
way around food.

3) Particle Swarm Optimization (PSO) [4]: The concept
of PSO arose from the study of bird feeding behavior.
By simulating the behavior of bird flocks flying for food,
the birds collaborate with one another to achieve the
group’s optimal goal.

4) Monarch Butterfly Optimization (MBO) [5]: MBO al-
gorithm simulates the migration and adaptation behavior
of monarch butterfly.

5) Bat Algorithm (BAT) [6]: BAT algorithm is a random
search algorithm that simulates bats in nature using a
kind of sonar to detect prey and avoid obstacles.

6) Cuckoo Search Algorithm (CS) [7]: CS algorithm is
an optimization algorithm by simulating the incubation
parasitism of cuckoos and Levy flight mechanism.

7) Firefly Algorithm (FA) [8]: FA is a heuristic algorithm
for information exchange, mutual attraction and danger
warning based on flashing behavior of fireflies.
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8) Flower Pollination Algorithm (FPA) [9]: FPA simulates
the process of plant cross-pollination by birds and bees
using Levy’s flight mechanism.

9) Differential Evolution (DE) [10]: DE is an intelligent
optimization algorithm generated by the cooperation and
competition between individuals within a group.

10) Genetic Algorithm (GA) [11]: GA is an optimization
algorithm that simulates the natural selection and genetic
mechanism of biological evolution.

11) Fruit Fly Optimization Algorithm (FOA) [12]: FOA
mimics the process of fruit flies that use their keen sense
of smell and vision to hunt.

12) Grey Wolf Optimizer (GWO) [13]: GWO is an
optimization search method inspired by the prey hunting
activities of grey wolves, which has strong convergence
performance, few parameters and easy implementation.

13) Harris Hawks Optimization (HHO) [14]: HHO is
an intelligent optimization algorithm that simulates the
predatory behavior of the Harris Hawk.

14) Whale Optimization Algorithm (WOA) [15]: WOA
mimics the hunting behavior of whales in nature and has
the advantages of being easy to implement and having
fewer parameters.

15) Simulated Annealing (SA) [16]: Simulated annealing
algorithm comes from solid annealing principle and is
based on Monte-Carlo iterative solution strategy. To
avoid falling into local optimality, the search process
is endowed with a time-varying probability of jumping
to zero.

16) Harmony Search (HS) [17]: HS algorithm is a simu-
lation of the process that musicians achieve the most
beautiful harmony by repeatedly adjusting the tones of
different instruments, so as to achieve the purpose of
global optimization.

17) Gravitational Search Algorithm (GSA) [18]: GSA is an
optimization method based on the law of gravitation and
Newton’s second law, which seeks the optimal solution
through the continuous movement of gravitation between
particles within a population.

18) Multi Verse Optimizer (MVO) [19]: MVO simulates
the motion behavior of objects with high expansion rate
tends to low expansion rate under the combined action of
white holes, black holes and wormholes in the multiverse
population, and tends to the optimal position in the search
space by means of gravity.
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Fig. 1. Representative Classic Methods: 18 Meta-heuristic Optimization Algorithms.

B. Parameter Settings

We used the toolkit1 for our experiments, and we followed
the default settings provided in the toolbox for each method. In
this section, we provide a detailed description of the parameters
for each method, which can be referred to in Table I.

Methods Parameters
ABC lb = 0, ub = 1, θ = 0.6, max limit = 5.
ACO tau = 1, eta = 1, alpha = 1, beta = 0.1, rho = 0.2.

PSO lb = 0, ub = 1, θ = 0.6, c1 = 2, c2 = 2, w = 0.9,
Vmax =(ub - lb)/2.

MBO
lb = 0, ub = 1, θ = 0.6, peri = 1.2, p = 5/12,
Smax = 1, BAR = 5/12, num land1 = 4, beta =
1.5.

BAT lb = 0, ub = 1, θ = 0.6, fmax = 2, fmin = 0, alpha
= 0.9, gamma = 0.9, A max = 2, r0 max = 1.

CS lb = 0, ub = 1, θ = 0.6, Pa = 0.25, alpha = 1, beta
= 1.5.

FA lb = 0, ub = 1, θ = 0.6, alpha0 = 1, beta0 = 1,
gamma = 1, calpha = 0.97.

FPA lb = 0, ub = 1, θ = 0.6, beta = 1.5, P = 0.8.
DE lb = 0, ub = 1, θ = 0.6, CR = 0.9, F = 0.5.
GA (Roulette) CR = 0.8, MR = 0.01.
GA (Tournament) CR = 0.8, MR = 0.01, Tour size = 3.
FOA lb = 0, ub = 1, θ = 0.6.
GWO lb = 0, ub = 1, θ = 0.6.
HHO lb = 0, ub = 1, θ = 0.6, beta = 1.5.
WOA lb = 0, ub = 1, θ = 0.6, b = 1.
SA c = 0.93, t0 = 100.

HS lb = 0, ub = 1, θ = 0.6, PAR = 0.05, HMCR =
0.7, bw = 0.2, NP = 20.

GSA lb = 0, ub = 1, θ = 0.6, G0 = 100, alpha = 20.

MVO lb = 0, ub = 1, θ = 0.6, p = 6, Wmax = 1, Wmin
= 0.2.

TABLE I
PARAMETERS OF DIFFERENT EVOLUTIONARY ALGORITHMS

For ABC, max limit is the maximum limits allowed. The
tau, rat, alpha, beta and rho in ACO are the pheromone value,
heuristic desirability, control pheromone, control heuristic and
pheromone trail decay coefficient respectively. The c1, c2,
w and Vmax in PSO are the cognitive factor, social factor,
inertia weight and maximum velocity respectively. The peri, p,
Smax, BAR, num land1 and beta in MBO are the migration
period, ratio, maximum step, butterfly adjusting rate, number
of butterflies in land 1 and levy component respectively. For
BAT, fmax is the maximum frequency, fmin is the minimum
frequency, alpha and gamma are two constants, A max is the
maximum loudness and r0 max is the maximum pulse rate.
The Pa, alpha and beta in CS are the discovery rate, constant

1https://github.com/JingweiToo/Wrapper-Feature-Selection-Toolbox

and levy component respectively. The alpha0, beta0, gamma
and calpha in FA are the constant, light amplitude, absorbtion
coefficient and control alpha respectively. In FPA, beta is the
levy component and P is the switch probability. In DE, CR is
the crossover rate and F is the constant factor. For genetic
algorithm (GA), we use Roulette Wheel and Tournament
for selection, which have the same crossover rate (CR) and
mutation rate (MR). Tournament also sets the tournament size
(Tour size). The beta in HHO is the levy component. The b
in WOA is the constant. For SA, c is the cooling rate and
t0 is the initial temperature. In HS, PAR, HMCR and bw are
the pitch adjusting rate, harmony memory considering rate
and bandwidth respectively. The G0 in GSA is the initial
gravitational constant and the alpha is a constant. For MVO, P
is the control TDR, Wmax is the maximum WEP and Wmin
is the minimum WEP. The lb and ub in the parameter table
are the lower boundary and the upper boundary.

In addition, for all algorithms, we set the number of
populations (NP) to 20 and the maximum number of iterations
(T) to 100. At the same time, we set a threshold value (θ) of
0.6 to convert the value of the real number field into a discrete
value, so as to decide whether to choose the feature of the
corresponding field. In this study, KNN classifier is employed
with K equals to 3. Our classification accuracy is calculated
using a five-fold cross-validation average. We performed each
experiment ten times and averaged the data to make sure the
experimental results were stable.

C. Converge Curves for Physics-based Heuristic Methods

We also conducted a comparison between MEL and four
physical-based heuristic methods, namely Simulated Annealing
(SA), Harmony Search (HS), Gravitational Search Algorithm
(GSA), and Multi-Verse Optimizer (MVO). Figures 2 and
3 illustrate the convergence curves of these physical-based
methods.

D. Supplementary Tables for Section V, Subsection G

This part provides the two tables from the seventh sub-section
“Experiments with Larger Data Samples” of the “Results and
Analysis” section, comparing the subset size and running
time. The first table shows the comparison of the average
subset sizes generated by different algorithms on 10 larger
datasets. It reports the number of selected features by each
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Fig. 2. Convergence Curves of Physics-based EC Algorithms in Terms of Accuracy

Fig. 3. Convergence Curves of Physics-based EC Algorithms in Terms of the Size of Feature Subset

method. The second table compares the average running times
of the algorithms in seconds. It lists the execution time of
each algorithm on each dataset. These two tables present a
quantitative analysis of how MEL performs relative to other
methods in terms of the parsimony of the selected feature
subsets and computational efficiency, using larger real-world
classification problems. They complement the classification
accuracy results discussed in the previous sub-section.

Dataset SaWDE FWPSO DENCA PSO-EMT MTPSO MEL (Ours)
BASEHOCK 2247.9 1.3 1514.9 108.5 172.9 1953.9
COIL20 426.9 3.3 363.6 48.1 219.5 345.2
HAPTDataSet 255.8 1.3 177.3 20.7 79.1 217.2
Isolet 257.0 1.0 227.0 35.3 94.1 243.6
madelon 205.0 1.8 214.1 10.9 18.7 204.1
MultipleFeaturesDigit 258.5 1.7 199.1 18.2 107.6 240.1
Pancancer 770.4 1.0 799.7 - 261.6 708.4
PCMAC 1453.7 1.0 1083.7 40.9 162.0 1361.4
RELATHE 1929.9 1.1 1434.4 49.7 250.6 1746.9
USPS 139.8 1.0 97.9 - 38.7 78.9
Average 794.5 1.5 611.2 41.5 140.5 710.0

TABLE II
SUBSET SIZE COMPARISON ON DATASETS WITH LARGE SAMPLE SIZE

Dataset SaWDE FWPSO DENCA PSO-EMT MTPSO MEL (Ours)
BASEHOCK 256.3 1884.8 2884.9 372330.9 7489.4 862.4
COIL20 35.2 268.9 234.7 85504.1 2415.4 121.9
HAPTDataSet 14.9 127.9 90.2 22998.8 394.2 58.2
Isolet 26.9 221.5 132.3 82507.8 1165.3 105.6
madelon 43.6 3687.3 604.1 198703.8 1325.1 169.3
MultipleFeaturesDigit 14.0 121.1 78.8 19404.5 442.9 55.0
Pancancer 543.0 3693.6 8396.1 - 20684.9 1803.7
PCMAC 157.3 1241.6 2370.3 226997.1 5316.9 589.0
RELATHE 121.3 897.8 1733.5 164727.4 5028.1 434.3
USPS 208.1 1499.1 1788.9 - 14718.1 661.3
Average 142.1 1364.4 1831.4 119223.2 5898.0 486.1

TABLE III
RUNNING TIME COMPARISON ON DATASETS WITH LARGE SAMPLE SIZE
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