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Abstract & Introduction Methodology (Continued) Reasoning Performance Analysis

Large Language Models (LLMs) demonstrate exceptional capabilities in NLP tasks including text annotation, question an-
swering, and dialogue generation. However, enhancing their reasoning capabilities remains crucial for tasks requiring log-
ical reasoning, commonsense understanding, and contextual awareness. In-Context Learning (ICL) provides a promising

approach for few-shot learning, enabling LLMs to reason by providing curated demonstrations as context, eliminating ex-

tensive retraining requirements.

Take action a : Choose demonstrations from knowledge base

RDES advances few-shot learning in NLP by addressing ICL's key challenges through adaptive demonstration selection. By
jointly optimizing relevance and diversity, it enhances LLMs' performance on tasks amenable to ICL, particularly classification
and reasoning. The schematic framework of RDES is illustrated in Figure 2.

Open-Source Models:

Table 1. Performance comparison of methods designed to boost LLM reasoning across
various datasets on open-source LLMs, with a focus on accuracy.

= This section provides a comprehensive
evaluation of the reasoning accuracy of both
closed-source and open-source LLMs across
four benchmark datasets, utilizing various
prompt engineering and demonstration
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= Action Space (A): Discrete selection over candidate demonstrations iC, with action a; € {1, ..., |K|} indicating the
chosen example index from the knowledge base.

= Transition Dynamics (P): Deterministic state updates through demonstration set modification. When action a;
(selecting candidate kq,) is taken in state sy = (z¢, By, i, Dy), the next state sy41 becomes:

si+1 = f(st,at) = (x4, Bt U{ka, }s 91, Dis1) (2)

where 7;41 is the new prediction based on the updated example set and Dy 1 is the new diversity score.
= Reward Function (R): A multi-objective reward balancing prediction accuracy and diversity gain:

R(st, at) = Lytrue = ) +A
Accarracy

(D1 — Dy) (3)

Diversity IFan)rovement

where I(+) is the indicator function, yre Is the true label, g; is the prediction at step ¢, Dy is the diversity at step t,
Dy 1 is the diversity after adding the selected example, and A\ controls the exploration-exploitation tradeoff. The

where x is the input text, {(z;, gjz-)}le are the k selected demonstrations, and ) is the set of possible labels.

= Col Prompting: This strategy incorporates Col reasoning into the prompt, allowing the LLM to generate intermediate
reasoning steps before producing the final label. This is formulated as marginalizing over possible reasoning chains R

plylz, E) =Y Piu(rlz, E) - Piu(yls, E,r) (6)

re’k

The model first computes the probability of a reasoning chain r given the input and demonstrations, then the
probability of the label y conditioned on the input, demonstrations, and the generated reasoning chain.

Experimental Setup

= We introduced RDES, a novel framework that employs reinforcement learning (specifically Q-learning and a
PPO-based variant) to optimize demonstration selection for in-context learning in LLMs by balancing relevance and
diversity, enhancing generalization and mitigating overfitting.

= Our extensive evaluation against ten baselines on four benchmark classification datasets demonstrated that RDES
significantly outperforms existing methods, with integration of RDES and Col reasoning (RDES/C) generally improving

performance, though benefits vary by model and dataset.

= Additional experiments on challenging reasoning benchmarks and varying demonstration counts further validated
RDES’s effectiveness, particularly the RDES/PPO variant, highlighting its potential for adaptive demonstration
selection in complex NLP tasks.

= Future work will focus on refining diversity metrics, extending RDES to other tasks like generation and question
answering, making Col usage adaptive, analyzing computational efficiency, exploring different retrieval methods, and

diversity coefficient A adapts during training via an annealing schedule: . > .
= We evaluated our method using four widely recognized datasets: BANKING/7, HWU64, CLINC150, and LIU54, assessing generalization across datasets.

— ) A e T
A(t) = Amin + (Amax — Amin)e ) employing a challenge set sampling strategy to ensure rigorous assessment.

This schedule prioritizes early exploration of diverse examples before focusing on accuracy. = A diverse set of LLMs was utilized, including both closed-source models (e.g., GPT-3.5-turbo) and open-source

= Discount Factor (v): v € [0, 1) emphasizes immediate rewards, which is suitable for finite-horizon few-shot learning models (e.g.. Gemma-2-2B, LLaMA-3-2-3B), with primary experiments conducted using RDES/B and RDES/C based
scenarios where a fixed number of examples are selected. on the Q-learning framework.
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