
Demonstration Selection for In-Context Learning via Reinforcement Learning
XubinWang 1, 2, 3 Jianfei Wu 3 Yichen Yuan 1 Deyu Cai 1 Mingzhe Li 1 Weijia Jia 1, 3

1Beijing Normal-Hong Kong Baptist University 2Hong Kong Baptist University 3Beijing Normal University at Zhuhai

Abstract & Introduction

Large Language Models (LLMs) demonstrate exceptional capabilities in NLP tasks including text annotation, question an-

swering, and dialogue generation. However, enhancing their reasoning capabilities remains crucial for tasks requiring log-

ical reasoning, commonsense understanding, and contextual awareness. In-Context Learning (ICL) provides a promising

approach for few-shot learning, enabling LLMs to reason by providing curated demonstrations as context, eliminating ex-

tensive retraining requirements.

ICL effectiveness critically depends on selecting appropriate demonstrations from knowledge bases. Conventional meth-

ods prioritizing similarity often overlook diversity, leading to biased representations and reduced generalization. These

techniques typically employ fixed strategies, failing to dynamically adapt to task-specific requirements.

We introduce the Relevance-Diversity Enhanced Selection (RDES) framework, a novel Reinforcement Learning (RL)-based

approach optimizing demonstration selection for ICL in few-shot scenarios. RDES leverages RL algorithms to dynamically

identify demonstrations maximizing both diversity (quantified via label distribution) and relevance to task objectives.

Key contributions:

RDES framework: RL-based dynamic demonstration selection enhancing performance and robustness

RL optimization: Balances relevance and diversity to mitigate overfitting

CoT integration: Seamless combination with Chain-of-Thought prompting

Comprehensive evaluation: Outperforms 10 baselines across multiple datasets using 14 LLMs

Figure 1. An example shows how a diversity-based

demonstration method works. In this example, the

diversity-based method helps the model recognize

that the input text expresses a sentiment that is

neither strongly positive nor negative, while the no

diversity-based method may lead to an inaccurate

positive classification due to its lack of varied

demonstrations.

Methodology (RL Formulation)

RL provides a natural framework for sequential decision making in demonstration selection. We model the interaction

between the selection policy and language model as an iterative process where the policy learns to construct optimal

demonstration sets through trial-and-error interactions.

Reinforcement Learning Formulation: We formalize selection as Markov Decision ProcessM = (S,A,P ,R, γ):
State Space (S): Captures the complete decision context through four components:
Textual features: φx(xt) ∈ Rdx (TF-IDF vector of input text)

Demonstration memory: φE(Et) ∈ Rde (Aggregated embeddings of selected examples)

Prediction history: φy(ŷt) ∈ R|Y| (One-hot encoded previous predictions)
Diversity tracking: Dt = |L(Et)|

k ∈ [1] (Normalized label diversity)
The state embedding is constructed by concatenating these four distinct components:

φ(st) = φx(xt)⊕ φE(Et)⊕ φy(ŷt)⊕ φD(Dt) (1)

where ⊕ denotes vector concatenation, and each φ· represents an embedding for the respective component.
Action Space (A): Discrete selection over candidate demonstrations K, with action at ∈ {1, ..., |K|} indicating the
chosen example index from the knowledge base.

Transition Dynamics (P ): Deterministic state updates through demonstration set modification. When action at
(selecting candidate kat) is taken in state st = (xt, Et, ŷt, Dt), the next state st+1 becomes:

st+1 = f (st, at) = (xt, Et ∪ {kat}, ŷt+1, Dt+1) (2)

where ŷt+1 is the new prediction based on the updated example set and Dt+1 is the new diversity score.
Reward Function (R): A multi-objective reward balancing prediction accuracy and diversity gain:

R(st, at) = I(ytrue = ŷt)︸ ︷︷ ︸
Accuracy

+λ (Dt+1 −Dt)︸ ︷︷ ︸
Diversity Improvement

(3)

where I(·) is the indicator function, ytrue is the true label, ŷt is the prediction at step t, Dt is the diversity at step t,
Dt+1 is the diversity after adding the selected example, and λ controls the exploration-exploitation tradeoff. The
diversity coefficient λ adapts during training via an annealing schedule:

λ(t) = λmin + (λmax − λmin)e−ηt (4)

This schedule prioritizes early exploration of diverse examples before focusing on accuracy.

Discount Factor (γ): γ ∈ [0, 1) emphasizes immediate rewards, which is suitable for finite-horizon few-shot learning
scenarios where a fixed number of examples are selected.

Methodology (Continued)

RDES advances few-shot learning in NLP by addressing ICL’s key challenges through adaptive demonstration selection. By

jointly optimizing relevance and diversity, it enhances LLMs’ performance on tasks amenable to ICL, particularly classification

and reasoning. The schematic framework of RDES is illustrated in Figure 2.

Figure 2. The RDES framework is an adaptive RL

approach for few-shot ICL demonstration selection in

LLMs. It employs a RL-based agent to dynamically

balance the relevance and diversity of selected

examples, guided by a reward function that

incorporates a label distribution diversity score. This

strategy enhances classification accuracy and

generalization by mitigating overfitting associated

with pure similarity-based methods. The framework

involves an Agent interacting with an Environment

(including a Knowledge Base and the LLM) to learn an

optimal selection policy.

Optimization Framework: Two RL implementations:

Q-Learning:
Model-free solution for learning strategies via temporal difference

updates.

Effective for small/discretizable state spaces.

Action-value function Q(s, a) estimates expected cumulative rewards.
Updates via standard Q-learning rule:

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)].
Implementation aspects: state discretization (TF-IDF binning), ε-greedy
exploration with exponential decay.

Uses tabular Q-value storage.

Theoretical convergence under standard conditions (Robbins-Monro,

bounded rewards).

PPO Variant:
For high-dimensional state spaces where tabular methods are infeasible.

Actor-critic architecture using neural networks.

Policy Network (πθ): Neural network producing demonstration selection
probabilities πθ(a|s). Uses state embedding φ(s).
Value Network (Vψ): Neural network estimating state value Vψ(s)
(expected cumulative reward). Uses state embedding φ(s).
Optimization Objective: PPO optimizes a clipped surrogate objective for

stability.

Combines clipped surrogate loss (LCLIP ), value function loss (LV F ), and
entropy bonus (LENT ): L(θ, ψ) = Et[LCLIPt (θ)− c1L

V F
t (ψ) + c2L

ENT
t (θ)].

LCLIP uses probability ratio rt(θ) and advantage estimate At, clipped

within [1− ε, 1 + ε].
LV F is squared error between predicted value and estimated return R̂t.

LENT encourages exploration.

Algorithm 1 RDES Training Framework

Require: Knowledge base K, Test inputs Dtest, LLM
M, RL algorithm A

1: Initialize selection policy π (Q-table or neural net-
works)

2: Precompute TF-IDF vectors for each sample xi ∈
Dtest and for knowledge base K

3: for i = 1 to N do

4: Sample input xi ∈ Dtest
5: Select demonstrations E with initial candi-

dates based on relevance (e.g., top-k TF-IDF
matches from K) and apply diversity adjustment

6: Generate prompt p = Format(xi, E)
7: Obtain prediction ŷ =M(p)
8: Compute diversity score D = |L(E)|

k
9: Encode state s = φ(xi, E, ŷ, D)
10: Select action a ∼ π(s) (example index from
K)

11: Calculate reward r = I(ytrue = ŷ) +λ(Dnew−
Dold)

12: Update policy parameters θ using A with

(s, a, r)
13: end for

14: return Optimized policy π∗

Prompting Strategies To enhance the performance of the LLM in few-shot settings, we employ two distinct prompting

strategies using the selected examples:

Standard Prompting: This strategy constructs a prompt by concatenating the input text, the selected demonstrations

(input-output pairs), and the set of possible labels. The LLM is then asked to predict the probability of a label y given
this prompt structure:

p(y|x,E) = PLM
(
y
∣∣ x, {(x̃i, ỹi)}ki=1,Y

)
(5)

where x is the input text, {(x̃i, ỹi)}ki=1 are the k selected demonstrations, and Y is the set of possible labels.
CoT Prompting: This strategy incorporates CoT reasoning into the prompt, allowing the LLM to generate intermediate

reasoning steps before producing the final label. This is formulated as marginalizing over possible reasoning chains R:

p(y|x,E) =
∑
r∈R

PLM(r|x,E) · PLM(y|x,E, r) (6)

The model first computes the probability of a reasoning chain r given the input and demonstrations, then the
probability of the label y conditioned on the input, demonstrations, and the generated reasoning chain.

Experimental Setup

We evaluated our method using four widely recognized datasets: BANKING77, HWU64, CLINC150, and LIU54,

employing a challenge set sampling strategy to ensure rigorous assessment.

A diverse set of LLMs was utilized, including both closed-source models (e.g., GPT-3.5-turbo) and open-source

models (e.g., Gemma-2-2B, LLaMA-3-2-3B), with primary experiments conducted using RDES/B and RDES/C based

on the Q-learning framework.

Additionally, we performed supplementary experiments on challenging benchmarks such as subsets of BigBenchHard,

GSM-8K, and SST5, utilizing models known for their strong performance in complex tasks, including Qwen-25-72B

and DeepSeek-R1-32B.

Reasoning Performance Analysis

Open-Source Models:

Table 1. Performance comparison of methods designed to boost LLM reasoning across

various datasets on open-source LLMs, with a focus on accuracy.

Datasets Models
Prompt Engineering Methods Demonstration Selection Methods Ours

ZS KP L2M CoT SF FS FSC AES RDS ADA RDES/B RDES/C

BANKING77

Gemma-2-2B 0.200 0.280 0.200 0.200 0.260 0.300 0.340 0.280 0.220 0.900 0.831 0.861

Gemma-2-9B 0.560 0.400 0.500 0.500 0.400 0.440 0.380 0.400 0.400 0.700 0.831 0.886

LLaMA-3.2-1B 0.120 0.100 0.000 0.000 0.100 0.000 0.000 0.020 0.040 0.680 0.024 0.744

LLaMA-3.2-3B 0.200 0.200 0.400 0.500 0.300 0.320 0.060 0.360 0.440 0.700 0.770 0.805

LLaMA-3-8B 0.578 0.560 0.563 0.552 0.458 0.090 0.182 0.531 0.536 0.758 0.784 0.847

Qwen-2.5-7B 0.700 0.480 0.600 0.420 0.480 0.440 0.180 0.440 0.420 0.700 0.803 0.859

Qwen-2.5-14B 0.400 0.400 0.420 0.420 0.420 0.480 0.460 0.500 0.520 0.800 0.839 0.868

Qwen-1.5-72B 0.529 0.480 0.524 0.528 0.551 0.653 0.612 0.509 0.542 0.775 0.785 0.892

Average 0.411 0.363 0.401 0.390 0.371 0.340 0.277 0.380 0.390 0.752 0.708 0.845

CLINC150

Gemma-2-2B 0.400 0.600 0.420 0.460 0.560 0.560 0.540 0.500 0.380 0.800 0.875 0.929

Gemma-2-9B 0.700 0.700 0.800 0.800 0.700 0.800 0.680 0.800 0.800 0.780 0.864 0.819

LLaMA-3.2-1B 0.400 0.520 0.060 0.380 0.600 0.000 0.020 0.080 0.080 0.400 0.256 0.122

LLaMA-3.2-3B 0.800 0.700 0.800 0.400 0.700 0.580 0.260 0.600 0.680 0.800 0.845 0.703

LLaMA3-8B 0.523 0.439 0.594 0.504 0.569 0.007 0.285 0.571 0.543 0.767 0.840 0.783

Qwen-2.5-7B 0.740 0.800 0.800 0.780 0.700 0.740 0.460 0.780 0.780 0.800 0.879 0.741

Qwen-2.5-14B 0.900 0.900 0.900 0.800 0.840 0.700 0.700 0.740 0.740 0.900 0.944 0.792

Qwen-1.5-72B 0.726 0.517 0.683 0.641 0.660 0.850 0.652 0.696 0.656 0.861 0.897 0.963

Average 0.649 0.647 0.632 0.596 0.666 0.530 0.450 0.596 0.582 0.763 0.800 0.731

HWU64

Gemma2-2B 0.300 0.320 0.300 0.300 0.400 0.460 0.440 0.420 0.360 0.600 0.832 0.851

Gemma2-9B 0.600 0.600 0.600 0.600 0.600 0.700 0.700 0.700 0.700 0.800 0.877 0.910

LLaMA-3.2-1B 0.200 0.100 0.080 0.000 0.100 0.020 0.000 0.020 0.060 0.360 0.381 0.687

LLaMA-3.2-3B 0.300 0.100 0.300 0.200 0.300 0.220 0.180 0.300 0.300 0.700 0.747 0.817

LLaMA-3-8B 0.478 0.407 0.493 0.479 0.563 0.632 0.498 0.651 0.645 0.837 0.816 0.859

Qwen-2.5-7B 0.780 0.700 0.800 0.600 0.800 0.640 0.540 0.760 0.740 0.800 0.805 0.880

Qwen-2.5-14B 0.780 0.800 0.800 0.440 0.740 0.800 0.800 0.720 0.680 0.900 0.886 0.895

Qwen-1.5-72B 0.698 0.615 0.676 0.661 0.668 0.825 0.817 0.749 0.774 0.877 0.867 0.924

Average 0.517 0.455 0.506 0.410 0.521 0.537 0.497 0.540 0.532 0.734 0.776 0.853

LIU54

Gemma-2-2B 0.400 0.400 0.500 0.400 0.400 0.620 0.480 0.500 0.440 0.600 0.733 0.854

Gemma-2-9B 0.500 0.500 0.600 0.600 0.600 0.580 0.580 0.500 0.500 1.000 0.722 0.837

LLaMA-3.2-1B 0.200 0.160 0.300 0.400 0.080 0.040 0.040 0.360 0.320 0.700 0.058 0.651

LLaMA-3.2-3B 0.400 0.400 0.400 0.300 0.400 0.360 0.320 0.500 0.400 0.600 0.772 0.749

LLaMA-3-8B 0.358 0.409 0.428 0.360 0.392 0.396 0.320 0.347 0.312 0.763 0.779 0.811

Qwen-2.5-7B 0.800 0.700 0.700 0.640 0.520 0.620 0.500 0.500 0.660 0.800 0.794 0.765

Qwen-2.5-14B 0.700 0.860 0.700 0.660 0.700 0.660 0.600 0.740 0.780 1.000 0.849 0.743

Qwen-1.5-72B 0.496 0.445 0.487 0.491 0.550 0.609 0.647 0.514 0.492 0.769 0.781 0.880

Average 0.482 0.484 0.514 0.481 0.455 0.486 0.436 0.495 0.488 0.779 0.686 0.786

This section provides a comprehensive

evaluation of the reasoning accuracy of both

closed-source and open-source LLMs across

four benchmark datasets, utilizing various

prompt engineering and demonstration

selection techniques. The evaluation

highlights popular closed-source models

such as GPT-3.5-turbo and Doubao,

alongside open-source alternatives like

Gemma, LLaMA, and Qwen, with results

presented in tables that emphasize the

top-performing techniques in bold and the

second-best results as underlined for clarity.

Prompt Engineering Methods:
Zero-Shot (ZS): No demonstrations, tests

generalization.

Knowledge Prompting (KP): Contextual

information generation.

Least-to-Most (L2M): Break tasks into smaller

steps.

Chain of Thought (CoT): Step-by-step reasoning.

Self-Refine (SF): Iterative critique and refinement.

Demonstration Selection Methods:
Few-Shot (FS): Limited text-label pairs.

Few-Shot with CoT (FSC): FS + explanations.

Active Selection (AES): Iterative selection using RL.

Representative Selection (RDS): Diverse subset

identification.

Adaptive Selection (ADA): Uncertainty-based,

semantic diversity.

Ours: RDES/B (base), RDES/C (RDES/B +

CoT), RDES/PPO (PPO variant).

Closed-Source Models:

Table 2. Performance comparison of methods designed to boost LLM reasoning across

various datasets on closed-source LLMs, with a focus on accuracy.

Datasets Models
Prompt Engineering Methods Demonstration Selection Methods Ours

ZS KP L2M CoT SF FS FSC AES RDS ADA RDES/B RDES/C

BANKING77

GPT-3.5-turbo 0.340 0.240 0.260 0.200 0.380 0.520 0.320 0.260 0.240 0.360 0.767 0.858

Doubao-lite-4k 0.300 0.300 0.300 0.320 0.300 0.500 0.360 0.300 0.280 0.400 0.750 0.830

Doubao-pro-4k 0.500 0.400 0.500 0.480 0.600 0.540 0.540 0.700 0.680 0.900 0.838 0.888

Hunyuan-lite 0.300 0.233 0.433 0.200 0.300 0.233 0.133 0.320 0.320 0.600 0.593 0.775

Average 0.360 0.293 0.373 0.300 0.395 0.448 0.338 0.395 0.380 0.565 0.737 0.838

CLINC150

GPT-3.5-turbo 0.460 0.420 0.400 0.480 0.460 0.600 0.380 0.300 0.380 0.720 0.845 0.949

Doubao-lite-4k 0.700 0.600 0.600 0.700 0.500 0.680 0.440 0.680 0.660 0.700 0.825 0.927

Doubao-pro-4k 0.660 0.680 0.620 0.700 0.700 0.800 0.640 0.680 0.640 0.900 0.938 0.961

Hunyuan-lite 0.633 0.800 0.767 0.700 0.633 0.467 0.500 0.480 0.620 0.800 0.730 0.772

Average 0.613 0.625 0.597 0.645 0.573 0.637 0.490 0.535 0.575 0.780 0.835 0.902

HWU64

GPT-3.5-turbo 0.260 0.360 0.280 0.340 0.280 0.560 0.360 0.100 0.260 0.520 0.850 0.914

Doubao-lite-4k 0.500 0.500 0.500 0.480 0.500 0.520 0.340 0.360 0.420 0.700 0.765 0.873

Doubao-pro-4k 0.640 0.760 0.620 0.800 0.640 0.680 0.600 0.620 0.640 1.000 0.862 0.918

Hunyuan-lite 0.533 0.367 0.333 0.433 0.233 0.600 0.433 0.540 0.320 0.700 0.514 0.784

Average 0.483 0.497 0.433 0.513 0.413 0.590 0.433 0.405 0.410 0.730 0.748 0.872

LIU54

GPT-3.5-turbo 0.380 0.260 0.360 0.460 0.240 0.480 0.480 0.140 0.180 0.300 0.743 0.868

Doubao-lite-4k 0.500 0.400 0.500 0.540 0.660 0.600 0.440 0.520 0.520 0.600 0.690 0.841

Doubao-pro-4k 0.400 0.420 0.400 0.520 0.520 0.800 0.760 0.500 0.520 0.900 0.829 0.884

Hunyuan-lite 0.533 0.500 0.567 0.700 0.633 0.367 0.500 0.460 0.620 0.560 0.565 0.704

Average 0.453 0.395 0.457 0.555 0.513 0.562 0.545 0.405 0.460 0.590 0.707 0.824

Figure 3. Average performance: The data

summarizes the average performance results of

various LLMs, encompassing both closed-source and

open-source variants, across different datasets.

RDES variants outperform prompt engineering (PE)

and demonstration selection (DS) baselines.

Conclusion

We introduced RDES, a novel framework that employs reinforcement learning (specifically Q-learning and a

PPO-based variant) to optimize demonstration selection for in-context learning in LLMs by balancing relevance and

diversity, enhancing generalization and mitigating overfitting.

Our extensive evaluation against ten baselines on four benchmark classification datasets demonstrated that RDES

significantly outperforms existing methods, with integration of RDES and CoT reasoning (RDES/C) generally improving

performance, though benefits vary by model and dataset.

Additional experiments on challenging reasoning benchmarks and varying demonstration counts further validated

RDES’s effectiveness, particularly the RDES/PPO variant, highlighting its potential for adaptive demonstration

selection in complex NLP tasks.

Future work will focus on refining diversity metrics, extending RDES to other tasks like generation and question

answering, making CoT usage adaptive, analyzing computational efficiency, exploring different retrieval methods, and

assessing generalization across datasets.
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