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Introduction

• LLM agents represent a frontier in AI decision-making, yet face critical

evolutionary limitations

• Key gap: Current approaches focus on offline deployment, causing:

◦ Over-reliance on base model capabilities

◦ Persistent misalignment issues

• Core challenge: Enable continuous evolution through environmental

interaction

• Critical barriers:

◦ Low sample efficiency

◦ Poor interpretability

◦ Resource constraints on edge devices

• Our solution: Novel reinforcement learning framework for self-evolving LLM

agents with academic/practical significance
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Introduction: Few-Shot Learning and ICL

• In few-shot learning, In-Context Learning (ICL) is a promising approach to

enhance LLM reasoning.

• ICL uses LLMs (like GPT architecture) by providing a curated set of

demonstrations as context, avoiding extensive retraining.

• This is suitable for tasks with limited labeled data.

• Critical challenge: The effectiveness of ICL depends on selecting appropriate

and representative demonstrations.

• Careful selection influences generalization and accuracy in novel situations.
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Introduction: Challenges in Demonstration Selection

• Significant challenge in selecting the most relevant and diverse demonstrations

from the knowledge base to optimize reasoning performance.

• Traditional methods often prioritize similarity, potentially overlooking diversity.

• This can lead to biased representations that don’t generalize well to unseen

data.

• Conventional techniques use fixed strategies, failing to dynamically adapt to

task requirements.

• This rigidity limits ICL effectiveness, as selected demonstrations may not align

optimally with task context or nuances.
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An Example Shows How a Diversity-based Demonstration Method Works
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Introduction: RDES & Contributions

• Critical Gap: Traditional ICL methods prioritize similarity-based demonstration
selection, causing:
◦ Limited generalization due to insufficient diversity

◦ Suboptimal performance from static selection strategies

◦ Biased representations in few-shot learning

• RDES Solution: Reinforcement learning framework for dynamic demonstration
selection
◦ Formulates selection as sequential decision-making problem

◦ Jointly optimizes relevance (accuracy) and diversity (generalization)

◦ Implements dual RL approaches: Q-learning and PPO variant

• Key Contributions:
◦ Novel RL framework for adaptive demonstration selection

◦ Optimization method mitigating overfitting while enhancing generalization

◦ Seamless integration with Chain-of-Thought (CoT) reasoning

◦ Comprehensive evaluation: 10 baselines across 14 LLMs showing significant

gainsWang et al. Demonstration Selection for In-Context Learning via Reinforcement Learning 7 / 40



RDES Framework
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Related Work: In-Context Learning (ICL)

• Transformative paradigm, especially with LLMs.

• Models adapt to new tasks by conditioning on a small set of demonstrations.

• Introduced with GPT-3, showing LLMs perform tasks with few exemplars.

• Effective in few-shot and zero-shot scenarios.

• Critical dependency on demonstration selection.

• Recent studies emphasize need for effective selection strategies.

• Approaches like DPP and IDS highlight diversity and relevance.
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Related Work: Demonstration Selection Techniques

• Crucial for ICL success.

• Traditional: heuristics, statistical measures, informative examples (active

learning concept).

• Recent prominence of diversity: improves generalization (e.g., clustering,

coverage-based like BERTScore-Recall, representative sampling).

• Skill-based methods (Skill-KNN) optimize selection by eliminating irrelevant

features.

• Some methods prioritize diversity statically (Yang et al., 2023).

• Some select based on uncertainty and diversity without training a policy

(Mavromatis et al., 2023).

• Calibration techniques focus on correcting biases (Zhao et al., 2021).
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Related Work: RL in Demonstration Selection

• Promising framework for optimizing selection, allowing policies to adapt

iteratively based on performance feedback.

• Prior work: (Scarlatos & Lan, 2023) used RL for selection and sequencing;

(Zhang et al., 2022) formulated selection as a sequential decision-making task

using Q-learning.

• RDES builds on these: sits at intersection of ICL, selection, and RL-based

post-training.

• Distinction of RDES: Uniquely focuses on the dual objectives of diversity

and relevance, explicitly optimizing both via a diversity score in the reward

function. 1) Explored Q-learning and PPO variants (RDES/PPO); 2) Integrates

with CoT prompting (RDES/C); 3) Lighter-weight alternative to RLHF

(optimizes input selection, not model weights); 4) Learns an adaptive policy per

query, better optimizing selection than some static/fixed methods.
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Methodology: Overview

• RDES tackles demonstration selection using a principled RL approach.

• Jointly optimizes for relevance and diversity.

• Four components:

1. Formal problem formulation as a Markov Decision Process (MDP).

2. Dual optimization strategies using Q-learning and PPO.

3. Implementation details.

4. Prompting strategies.
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Methodology: RL Formulation (MDP)

• RL provides a natural framework for sequential decision making.

• Interaction modeled as iterative process: policy learns to construct optimal

demonstration sets through trial-and-error.

• Formalized as a finite-horizon MDP M = (S ,A,P,R, γ).
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Methodology: MDP Components - State Space (S)

• Captures complete decision context through four components:

◦ Textual features: TF-IDF vector of input text ϕx(xt).

◦ Demonstration memory: Aggregated embeddings of selected examples ϕE (Et).

◦ Prediction history: One-hot encoded previous predictions ϕy (ŷt).

◦ Diversity tracking: Normalized label diversity Dt = |L(Et)|/k.

• State embedding: ϕ(st) = ϕx(xt)⊕ ϕE (Et)⊕ ϕy (ŷt)⊕ ϕD(Dt) (vector

concatenation).
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Methodology: MDP Components - Action Space (A) & Transition

Dynamics (P)

• Action Space (A):

◦ Discrete selection over candidate demonstrations K .

◦ Action at ∈ {1, ..., |K |} indicates the chosen example index from the knowledge

base.

• Transition Dynamics (P):

◦ Deterministic state updates through demonstration set modification.

◦ Selecting candidate kat in state st leads to next state st+1:

◦ st+1 = f (st , at) = (xt ,Et ∪ {kat}, ŷt+1,Dt+1).

◦ ŷt+1 is new prediction, Dt+1 is new diversity score.
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Methodology: MDP Components - Reward Function (R) & Discount

Factor (γ)

• Reward Function (R):

◦ Multi-objective reward balancing prediction accuracy and diversity gain.

◦ R(st , at) = I (ytrue = ŷt)︸ ︷︷ ︸
Accuracy

+λ (Dt+1 − Dt)︸ ︷︷ ︸
Diversity Improvement

.

◦ I (·) is indicator function, ytrue is true label, ŷt is prediction at step t.

◦ Dt is diversity at t, Dt+1 is diversity after adding example.

◦ λ controls exploration-exploitation tradeoff.

◦ λ adapts via annealing schedule: λ(t) = λmin + (λmax − λmin)e
−ηt .

◦ Schedule prioritizes early diversity exploration before focusing on accuracy.

• Discount Factor (γ):

◦ γ ∈ [0, 1) emphasizes immediate rewards.

◦ Suitable for finite-horizon few-shot learning (fixed number of examples selected).
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Methodology: Optimization Framework

• Two primary RL algorithms used to handle state space complexities.

• Q-learning Approach:

◦ Model-free solution for learning strategies via temporal difference updates.

◦ Effective for small/discretizable state spaces.

◦ Action-value function Q(s, a) estimates expected cumulative rewards.

◦ Updates via standard Q-learning rule:

Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s ′, a′)− Q(s, a)].

◦ Implementation aspects: state discretization (TF-IDF binning), ϵ-greedy

exploration with exponential decay.

◦ Uses tabular Q-value storage.

◦ Theoretical convergence under standard conditions (Robbins-Monro, bounded

rewards).
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Methodology: Optimization Framework (cont.)

• Proximal Policy Optimization (PPO) Variant:

◦ For high-dimensional state spaces where tabular methods are infeasible.

◦ Actor-critic architecture using neural networks.

◦ Policy Network (πθ): Neural network producing demonstration selection

probabilities πθ(a|s). Uses state embedding ϕ(s).

◦ Value Network (Vψ): Neural network estimating state value Vψ(s) (expected

cumulative reward). Uses state embedding ϕ(s).

◦ Optimization Objective: PPO optimizes a clipped surrogate objective for

stability.

◦ Combines clipped surrogate loss (LCLIP), value function loss (LVF ), and entropy

bonus (LENT ): L(θ, ψ) = Et [L
CLIP
t (θ)− c1L

VF
t (ψ) + c2L

ENT
t (θ)].

◦ LCLIP uses probability ratio rt(θ) and advantage estimate At , clipped within

[1− ϵ, 1 + ϵ].

◦ LVF is squared error between predicted value and estimated return R̂t .

◦ LENT encourages exploration.
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Methodology: Algorithmic Implementation

• Unified Training Paradigm: Core procedure shared by Q-learning and PPO

(Algorithm 1).

• Iteratively: Sample input, select demonstrations (initially based on relevance,

adjusted for diversity), format prompt, get LLM prediction, compute diversity

score, encode state, select action (example index), calculate reward (accuracy

+ diversity change), update policy parameters.

• State Representation Details: State embedding ϕ(st) is concatenation of

TF-IDF vector, aggregated selected example embeddings, prediction history,

and normalized label diversity. Provides context for selection decisions.
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Methodology: RDES Training Framework

Algorithm 1 RDES Training Framework

Require: Knowledge base K, Test inputs Dtest, LLMM, RL algorithm A
1: Initialize selection policy π (Q-table or neural networks)

2: Precompute TF-IDF vectors for each sample xi ∈ Dtest and for knowledge base

K
3: for i = 1 to N do

4: Sample input xi ∈ Dtest

5: Select demonstrations E with initial candidates based on relevance (e.g., top-

k TF-IDF matches from K) and apply diversity adjustment

6: Generate prompt p = Format(xi ,E )

7: Obtain prediction ŷ =M(p)

8: Compute diversity score D = |L(E)|
k

9: Encode state s = ϕ(xi ,E , ŷ ,D)

10: Select action a ∼ π(s) (example index from K)
11: Calculate reward r = I(ytrue = ŷ) + λ(Dnew − Dold)

12: Update policy parameters θ using A with (s, a, r)

13: end for

14: return Optimized policy π∗
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Methodology: Prompting Strategies

• Used with selected examples to enhance LLM performance.

• Standard Prompting:

◦ Concatenate input text, selected demonstrations (input-output pairs), and

possible labels.

◦ LLM predicts label probability given this prompt structure.

◦ p(y |x ,E ) = PLM(y | Prompt : x , {(x̃i , ỹi )}ki=1,Y ).

• CoT Prompting:

◦ Incorporates CoT reasoning steps before final label.

◦ LLM generates intermediate reasoning steps.

◦ Formulated as marginalizing over possible reasoning chains R.

◦ p(y |x ,E ) =
∑

r∈R PLM(r |x ,E ) · PLM(y |x ,E , r).
◦ Model computes probability of reasoning chain, then label probability conditioned

on input, demos, and reasoning chain.
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Experiments: Datasets

• Four main classification datasets:
◦ BANKING77: Banking sector intents. (77 intents, 9003 KB, 3080 Test, 1

Domain).

◦ HWU64: Extensive multi-domain coverage. (64 intents, 8828 KB, 1104 Test, 21

Domains).

◦ LIU54: Extensive multi-domain coverage, specialized queries. (54 intents, 20382

KB, 2548 Test, 21 Domains).

◦ CLINC150: Further enriches evaluation, technical nature. (150 intents, 18000

KB, 2250 Test, 10 Domains).

• Additional challenging reasoning benchmarks:
◦ BigBenchHard (boolean expressions, web of lies subsets).

◦ GSM-8K (math word problems).

◦ SST5 (sentiment treebank).

• Randomly sampled 1,000 examples from test sets for supplementary

experiments.
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Experiments: Compared Methods

• Evaluated ten baseline approaches.
• Prompt Engineering Methods:

◦ Zero-Shot (ZS): No demonstrations, tests generalization.

◦ Knowledge Prompting (KP): Contextual information generation.

◦ Least-to-Most (L2M): Break tasks into smaller steps.

◦ Chain of Thought (CoT): Step-by-step reasoning.

◦ Self-Refine (SF): Iterative critique and refinement.

• Demonstration Selection Methods:
◦ Few-Shot (FS): Limited text-label pairs.

◦ Few-Shot with CoT (FSC): FS + explanations.

◦ Active Selection (AES): Iterative selection using RL.

◦ Representative Selection (RDS): Diverse subset identification.

◦ Adaptive Selection (ADA): Uncertainty-based, semantic diversity.

• Ours: RDES/B (base), RDES/C (RDES/B + CoT), RDES/PPO (PPO

variant).
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Experiments: LLMs Used

• Diverse set, including closed-source and open-source models.

• Closed-source (proprietary, strong NLP capabilities):

◦ GPT-3.5-turbo (OpenAI).

◦ Doubao-lite-4k, Doubao-pro-4k (ByteDance).

◦ Hunyuan-lite (Tencent).

• Open-source (flexibility, customization, innovation):

◦ Gemma-2-2B, Gemma-2-9B (Google).

◦ LLaMA-3.2-1B, LLaMA-3.2-3B, LLaMA-3-8B (Meta).

◦ Qwen-2.5-7B, Qwen-2.5-14B, Qwen-1.5-72B (Alibaba Cloud).

• Specific models for challenging tasks (Section 4.5, Appendix A.6):

◦ Qwen-2.5-72B.

◦ DeepSeek-R1-32B (focused on reasoning).

Wang et al. Demonstration Selection for In-Context Learning via Reinforcement Learning 24 / 40



Results: Reasoning Performance (Closed-Source)

Table: Performance comparison of methods designed to boost LLM reasoning across various

datasets on closed-source LLMs, with a focus on accuracy.

Datasets Models
Prompt Engineering Methods Demonstration Selection Methods Ours

ZS KP L2M CoT SF FS FSC AES RDS ADA RDES/B RDES/C

BANKING77

GPT-3.5-turbo 0.340 0.240 0.260 0.200 0.380 0.520 0.320 0.260 0.240 0.360 0.767 0.858

Doubao-lite-4k 0.300 0.300 0.300 0.320 0.300 0.500 0.360 0.300 0.280 0.400 0.750 0.830

Doubao-pro-4k 0.500 0.400 0.500 0.480 0.600 0.540 0.540 0.700 0.680 0.900 0.838 0.888

Hunyuan-lite 0.300 0.233 0.433 0.200 0.300 0.233 0.133 0.320 0.320 0.600 0.593 0.775

Average 0.360 0.293 0.373 0.300 0.395 0.448 0.338 0.395 0.380 0.565 0.737 0.838

CLINC150

GPT-3.5-turbo 0.460 0.420 0.400 0.480 0.460 0.600 0.380 0.300 0.380 0.720 0.845 0.949

Doubao-lite-4k 0.700 0.600 0.600 0.700 0.500 0.680 0.440 0.680 0.660 0.700 0.825 0.927

Doubao-pro-4k 0.660 0.680 0.620 0.700 0.700 0.800 0.640 0.680 0.640 0.900 0.938 0.961

Hunyuan-lite 0.633 0.800 0.767 0.700 0.633 0.467 0.500 0.480 0.620 0.800 0.730 0.772

Average 0.613 0.625 0.597 0.645 0.573 0.637 0.490 0.535 0.575 0.780 0.835 0.902

HWU64

GPT-3.5-turbo 0.260 0.360 0.280 0.340 0.280 0.560 0.360 0.100 0.260 0.520 0.850 0.914

Doubao-lite-4k 0.500 0.500 0.500 0.480 0.500 0.520 0.340 0.360 0.420 0.700 0.765 0.873

Doubao-pro-4k 0.640 0.760 0.620 0.800 0.640 0.680 0.600 0.620 0.640 1.000 0.862 0.918

Hunyuan-lite 0.533 0.367 0.333 0.433 0.233 0.600 0.433 0.540 0.320 0.700 0.514 0.784

Average 0.483 0.497 0.433 0.513 0.413 0.590 0.433 0.405 0.410 0.730 0.748 0.872

LIU54

GPT-3.5-turbo 0.380 0.260 0.360 0.460 0.240 0.480 0.480 0.140 0.180 0.300 0.743 0.868

Doubao-lite-4k 0.500 0.400 0.500 0.540 0.660 0.600 0.440 0.520 0.520 0.600 0.690 0.841

Doubao-pro-4k 0.400 0.420 0.400 0.520 0.520 0.800 0.760 0.500 0.520 0.900 0.829 0.884

Hunyuan-lite 0.533 0.500 0.567 0.700 0.633 0.367 0.500 0.460 0.620 0.560 0.565 0.704

Average 0.453 0.395 0.457 0.555 0.513 0.562 0.545 0.405 0.460 0.590 0.707 0.824
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Results: Reasoning Performance (Closed-Source) (cont.)

• RDES/B and RDES/C consistently outperform alternative methods across

evaluated datasets (BANKING77, CLINC150, HWU64, LIU54).

• RDES/C (with CoT) achieves highest accuracy in nearly all instances.

• CoT and KP yield strong results, but task/dataset dependent.

• ADA and FSC competitive but generally outperformed by RDES/B and

RDES/C.

• Doubao-pro-4k excelled, achieving peak performance of 0.961 on CLINC150

with RDES/C.

• GPT-3.5-turbo shows stable performance.

• RDES/C’s incorporation of CoT consistently leads to superior performance.

• Underscores impact of advanced techniques, adaptive/CoT strategies are

essential.
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Results: Reasoning Performance (Open-Source)

Datasets Models
Prompt Engineering Methods Demonstration Selection Methods Ours

ZS KP L2M CoT SF FS FSC AES RDS ADA RDES/B RDES/C

BANKING77

Gemma-2-2B 0.200 0.280 0.200 0.200 0.260 0.300 0.340 0.280 0.220 0.900 0.831 0.861

Gemma-2-9B 0.560 0.400 0.500 0.500 0.400 0.440 0.380 0.400 0.400 0.700 0.831 0.886

LLaMA-3.2-1B 0.120 0.100 0.000 0.000 0.100 0.000 0.000 0.020 0.040 0.680 0.024 0.744

LLaMA-3.2-3B 0.200 0.200 0.400 0.500 0.300 0.320 0.060 0.360 0.440 0.700 0.770 0.805

LLaMA-3-8B 0.578 0.560 0.563 0.552 0.458 0.090 0.182 0.531 0.536 0.758 0.784 0.847

Qwen-2.5-7B 0.700 0.480 0.600 0.420 0.480 0.440 0.180 0.440 0.420 0.700 0.803 0.859

Qwen-2.5-14B 0.400 0.400 0.420 0.420 0.420 0.480 0.460 0.500 0.520 0.800 0.839 0.868

Qwen-1.5-72B 0.529 0.480 0.524 0.528 0.551 0.653 0.612 0.509 0.542 0.775 0.785 0.892

Average 0.411 0.363 0.401 0.390 0.371 0.340 0.277 0.380 0.390 0.752 0.708 0.845

CLINC150

Gemma-2-2B 0.400 0.600 0.420 0.460 0.560 0.560 0.540 0.500 0.380 0.800 0.875 0.929

Gemma-2-9B 0.700 0.700 0.800 0.800 0.700 0.800 0.680 0.800 0.800 0.780 0.864 0.819

LLaMA-3.2-1B 0.400 0.520 0.060 0.380 0.600 0.000 0.020 0.080 0.080 0.400 0.256 0.122

LLaMA-3.2-3B 0.800 0.700 0.800 0.400 0.700 0.580 0.260 0.600 0.680 0.800 0.845 0.703

LLaMA3-8B 0.523 0.439 0.594 0.504 0.569 0.007 0.285 0.571 0.543 0.767 0.840 0.783

Qwen-2.5-7B 0.740 0.800 0.800 0.780 0.700 0.740 0.460 0.780 0.780 0.800 0.879 0.741

Qwen-2.5-14B 0.900 0.900 0.900 0.800 0.840 0.700 0.700 0.740 0.740 0.900 0.944 0.792

Qwen-1.5-72B 0.726 0.517 0.683 0.641 0.660 0.850 0.652 0.696 0.656 0.861 0.897 0.963

Average 0.649 0.647 0.632 0.596 0.666 0.530 0.450 0.596 0.582 0.763 0.800 0.731

HWU64

Gemma2-2B 0.300 0.320 0.300 0.300 0.400 0.460 0.440 0.420 0.360 0.600 0.832 0.851

Gemma2-9B 0.600 0.600 0.600 0.600 0.600 0.700 0.700 0.700 0.700 0.800 0.877 0.910

LLaMA-3.2-1B 0.200 0.100 0.080 0.000 0.100 0.020 0.000 0.020 0.060 0.360 0.381 0.687

LLaMA-3.2-3B 0.300 0.100 0.300 0.200 0.300 0.220 0.180 0.300 0.300 0.700 0.747 0.817

LLaMA-3-8B 0.478 0.407 0.493 0.479 0.563 0.632 0.498 0.651 0.645 0.837 0.816 0.859

Qwen-2.5-7B 0.780 0.700 0.800 0.600 0.800 0.640 0.540 0.760 0.740 0.800 0.805 0.880

Qwen-2.5-14B 0.780 0.800 0.800 0.440 0.740 0.800 0.800 0.720 0.680 0.900 0.886 0.895

Qwen-1.5-72B 0.698 0.615 0.676 0.661 0.668 0.825 0.817 0.749 0.774 0.877 0.867 0.924

Average 0.517 0.455 0.506 0.410 0.521 0.537 0.497 0.540 0.532 0.734 0.776 0.853

LIU54

Gemma-2-2B 0.400 0.400 0.500 0.400 0.400 0.620 0.480 0.500 0.440 0.600 0.733 0.854

Gemma-2-9B 0.500 0.500 0.600 0.600 0.600 0.580 0.580 0.500 0.500 1.000 0.722 0.837

LLaMA-3.2-1B 0.200 0.160 0.300 0.400 0.080 0.040 0.040 0.360 0.320 0.700 0.058 0.651

LLaMA-3.2-3B 0.400 0.400 0.400 0.300 0.400 0.360 0.320 0.500 0.400 0.600 0.772 0.749

LLaMA-3-8B 0.358 0.409 0.428 0.360 0.392 0.396 0.320 0.347 0.312 0.763 0.779 0.811

Qwen-2.5-7B 0.800 0.700 0.700 0.640 0.520 0.620 0.500 0.500 0.660 0.800 0.794 0.765

Qwen-2.5-14B 0.700 0.860 0.700 0.660 0.700 0.660 0.600 0.740 0.780 1.000 0.849 0.743

Qwen-1.5-72B 0.496 0.445 0.487 0.491 0.550 0.609 0.647 0.514 0.492 0.769 0.781 0.880

Average 0.482 0.484 0.514 0.481 0.455 0.486 0.436 0.495 0.488 0.779 0.686 0.786
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Results: Reasoning Performance (Open-Source)(cont.)

• Significant performance variations across datasets/models.

• RDES/C consistently outperforms other methods in BANKING77

(average 0.845 vs ADA 0.752) and shows robustness in HWU64 (average 0.853

vs ADA 0.734).

• CLINC150 benefits from larger models (Qwen-1.5-72B).

• On CLINC150, RDES/B (0.800) outperforms RDES/C (0.731), and ADA

(0.763). This suggests dataset characteristics influence optimal RDES variant.

• ZS and KP show limitations compared to ADA and RDES.

• Larger models (Qwen-2.5-14B, Qwen-1.5-72B) show marked improvements,

especially with RDES/C (synergistic effect of scale and technique).

• RDES methods, particularly with CoT, provide advantage across datasets.

• Dataset-specific trends underscore importance of tailored approaches.
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Results: Average Performance

Figure: These figures illustrate the average results across closed-source/open-source models

on different datasets, comparing the best results from the prompt engineering (PE) and

demonstration selection (DS) methods with our proposed approach.
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Results: Average Performance (cont.)

• Summarizes average performance across closed-source/open-source models.

• Highlights effectiveness of RDES/B and RDES/C compared to baselines.

• BANKING77: RDES/C (0.843) significantly surpasses RDES/B (0.718) and

ADA (0.689).

• CLINC150: RDES/B (0.812) strong, followed by RDES/C (0.788), ADA

(0.769).

• HWU64: RDES/C (0.859) leads, RDES/B (0.767), ADA (0.733).

• LIU54: RDES/C (0.799) outperforms RDES/B (0.693) and ADA (0.716).

• Overall illustrates effectiveness in enhancing performance through advanced

techniques.
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Results: Challenging Reasoning Tasks

• RDES shows competitive performance.

• Findings demonstrate RDES maintains strong performance on tasks requiring

complex reasoning.

• Supports RDES’s broader applicability beyond straightforward classification.

• Exploration of PPO shows promise for these tasks.

Table: Supplementary Performance Comparison on SST5, BigBenchHard, and GSM-8K

Methods
SST5 BigBenchHard - boolean expressions BigBenchHard - web of lie GSM-8K

Qwen-2.5-72B DeepSeek-R1-32B Qwen-2.5-72B DeepSeek-R1-32B Qwen-2.5-72B DeepSeek-R1-32B Qwen-2.5-72B DeepSeek-R1-32B

FS 0.56 0.70 0.98 0.38 0.58 0.98 0.50 0.28

FSC 0.54 0.66 0.60 0.46 1.00 1.00 0.56 0.64

AES 0.84 0.84 0.53 0.60 0.85 0.72 0.92 0.08

RDS 0.76 0.84 0.53 0.60 0.89 0.68 0.90 0.48

ADA 0.90 0.90 0.53 0.60 0.83 0.72 0.98 0.36

RDES/B 0.44 0.57 0.76 1.00 0.50 0.93 0.87 0.37

RDES/C 0.51 0.52 0.90 0.99 0.98 1.00 0.92 0.73

RDES/PPO 0.84 0.84 1.00 1.00 1.00 0.90 0.94 0.48
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Results: Varying Number of Demonstrations

• Investigates impact of varying number of demonstrations (k) on GSM-8K and

SST5.

• Uses Qwen-2.5-72B model.

• Methods: FS, FSC, AES, RDS, ADA, RDES/B, RDES/C, RDES/PPO

evaluated for k = 3, 5, 7, 10.

• Performance changes depending on the size of the demonstration set.

• Example GSM-8K: AES, RDS, ADA, RDES/PPO, RDES/C perform strongly at

k = 3, 7, but performance can drop significantly at k = 5, 10 for some methods

(e.g., AES, ADA).

• RDES/C seems more stable across k on GSM-8K compared to some baselines.

• SST5 performance is less sensitive to k variations for most methods.

• Results highlight diversity-driven generalization, especially with RDES/PPO,

even in varying settings.
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Results: Varying Number of Demonstrations (cont.)

Table: Performance of Methods Across Varying Numbers of Demonstrations (k) Using

Qwen-2.5-72B Model

Methods
GSM-8K (Accuracy) SST5 (Accuracy)

k=3 k=5 k=7 k=10 k=3 k=5 k=7 k=10

FS 0.50 0.28 0.50 0.28 0.54 0.56 0.54 0.56

FSC 0.56 0.64 0.56 0.64 0.52 0.54 0.52 0.54

AES 0.92 0.08 0.92 0.08 0.82 0.84 0.82 0.84

RDS 0.90 0.48 0.90 0.48 0.74 0.76 0.74 0.76

ADA 0.98 0.36 0.98 0.36 0.88 0.90 0.88 0.90

RDES/B 0.87 0.37 0.87 0.37 0.42 0.44 0.42 0.44

RDES/C 0.92 0.73 0.92 0.73 0.49 0.51 0.49 0.51

RDES/PPO 0.94 0.48 0.94 0.48 0.82 0.84 0.82 0.84
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Results: Ablation Study on Diversity

• Study Focus: Impact of diversity mechanisms (No-Diversity, RDES/B,

RDES/C) across closed-source and open-source models on four datasets.

• Key Finding: Incorporating diversity generally enhances model performance.
• Closed-source Models (Figure 2):

◦ RDES/C consistently outperforms others across all datasets.

◦ Example: BANKING77 avg accuracy: RDES/C (0.838) vs. No-Diversity (0.600).

• Open-source Models (Figure 3):
◦ Performance varies by dataset.

◦ BANKING77: RDES/C (0.845) vs. No-Diversity (0.747).

◦ CLINC150: RDES/B (0.800) > No-Diversity (0.768) and RDES/C (0.731).

◦ HWU64: RDES/C (0.853) significantly boosts accuracy from No-Diversity

(0.732).

◦ LIU54: RDES/C (0.786) slightly higher than No-Diversity/RDES/B.

• Conclusion: A nuanced approach is needed for model and dataset pairing in

open-source models.
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Results: Ablation Study on Diversity (Closed-source Models)

Figure: Performance of various closed-source models across different datasets, highlighting

the impact of diversity mechanisms.
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Results: Ablation Study on Diversity (Open-source Models)

Figure: Performance of various open-source models across different datasets, highlighting the

impact of diversity mechanisms.
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Conclusion

• Introduced RDES, a novel framework using RL (Q-learning, with PPO variant)

to optimize demonstration selection for ICL in LLMs.

• RDES balances relevance and diversity, enhancing generalization and

mitigating overfitting.

• Extensive evaluation showed RDES significantly outperforms ten baseline

methods on four benchmark classification datasets.

• Integrating RDES with CoT reasoning (RDES/C) generally enhances

performance, though benefits vary with model and dataset.

• Additional experiments on more challenging reasoning benchmarks and with

varying numbers of demonstrations further validated RDES’s effectiveness.

• Highlighted diversity-driven generalization, especially with the RDES/PPO

variant, even in complex tasks or varying settings.

• Results underscore the potential of RL to facilitate adaptive demonstration
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Future Work

• Refining diversity metrics.

• Extending RDES to tasks beyond classification (e.g., generation, question

answering).

• Making CoT usage adaptive within the RL framework.

• Analyzing computational cost and sample efficiency.

• Exploring different retrieval methods.

• Assessing the generalization capabilities of strategies across datasets.
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Impact Statement

• Primary Positive Impact: Significant enhancement in LLM accuracy and

robustness in data-limited scenarios.

• Makes LLMs more effective for practical applications (intent detection,

sentiment analysis).

• Helps mitigate overfitting biases from purely similarity-based selection.

• Potential Negative Impacts:
◦ Enhanced classification could be misused (surveillance, censorship).

◦ Extending to generative tasks could contribute to misinformation.

◦ Training involves significant computational cost (numerous LLM calls), potentially

limiting accessibility.

◦ Lack of user studies means real-world human-centric impacts not yet.

• Mitigation: Explore computational efficiency, necessitate safeguards (especially

for generation), conduct user studies, adherence to ethical principles

(transparency, fairness, accountability).
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Thank you for your attention!

Questions?
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